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NON-SMIRNOV DOMAINS

KNUT 0YMA

(Communicated by Clifford J. Earle, Jr.)

Abstract. If 0. is a Jordan domain, a small perturbation of the boundary

gives a non-Smirnov domain.

Let D be the open unit disc and T its boundary. A conformai mapping f(z)

from D onto a Jordan domain Q extends to a homeomorphism between D and

Q (the closures). This was proved by Osgood and Taylor and independently

by Carathéodory (1913). The boundary of Q, dQ, is rectifiable if and only
if f'(z) £ Hl. See [1]. The Hp spaces are treated in [2] and [4]. The length

of Öfi is \dQ\ = ¡¡n\f'(eie)\d6. Because f'(z) belongs to Hl we have

f'(z) — S(z)F(z), where S(z) is singular inner and F(z) is outer. There is

no Blaschke factor since f(z) is univalent. If S(z) = 1, then Q is called a

Smirnov domain. In such domains function theory inherits nice properties from

the unit disc. See Chapter 10 of [2]. Non-Smirnov domains exist. An elegant

proof is due to Duren, Shapiro, and Shields [3]. Keldysh and Lavrentiev gave

the first example in 1937. A detailed version appears in the book of Privalov

[6].
In this paper we will use the idea of Keldysh and Lavrentiev to show that

the shape of such domains can roughly be prescribed. In particular the non-

Smirnov domains are dense in the simply connected domains in the sense of

Carathéodory.

Theorem. If f(z) is univalent in D, 0 < rx < r2 < 1, then there exists a non-

Smirnov domain A such that f(\z\ < rx) c A c f(\z\ < r2). There exists a

conformai mapping (¡>(z) of D onto A such that \<p'(e'e)\ — constant a.e.

The result has an interesting Brownian motion interpretation. Let 7 be a

measurable subset of <9A. Consider a Brownian motion starting at <p(0). The

probability for the first exit from A to take place on 7 equals |7|/|9A|. We

need five lemmas.

Lemma 1 (Montel). Let Qi c Q2 be Jordan domains bounded by finitely many

analytic arcs. Assume that f(z) maps fi, conformally onto D and that f(zo)

= fi(zo) for some z0 6 Qx. If the open analytic arc F is contained in d£lx n

ÖQ2, then \f2(z)\ > \f¡(z)\ for every z £Y.
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A proof is found in [6], p. 28.
Let 7 be a subarc of T of length 26 < |. For 0 < y < \ , Cy is the part of

a circle through the endpoints of 7 lying outside D making the angle y n with

7. Dy is the domain bounded by (T\I)uCY. Let h7(z) map Dy conformally
onto D such that hy(0) = 0. The midpoint of Cy is z0 .

Lemma 2. The minimum of \h'y(z)\ for z £ Cy is attained at z0.

_£_ cos2 Hz;

1*1(^0)1 = - -~2('+y) 2
2      tan^cos*^

M = TT7-slnT

A proof is in [6], p. 162.
We want to solve the equation \h'y(zo)\ = p < 1 with respect to y .

Lemma 3. There exists a constant c > 0 such that any solution y of the equation

\h'y(zo)\ = p < 1 satisfies y > c(l - p).

Proof. By the mean value theorem we have

p-l = \h7(z0)\-\h0(z0)\=(Jj\hr(zo)\)    -y

for some number t between 0 and y .

Let M = Max{\fy\h'y(z0)\ |: 0 < y < \ , 26 < n/3} .

Then 1 - p < M • y. This proves the lemma with c = M~x .

Lemma 4. There exists a strictly increasing function g(y) satisfying g(0) — 1

and |C,|>*(y)|/|.

The proof uses simple geometry and is omitted.

Lemma 5. Let <p(z) be analytic in D. Assume that \<p'(z)\ < 1 and that (p'(0) >
S > 0. If E is a measurable subset of T of length s > 0, then JE \tp'(e'e)\ dd >
K = K(s,o)>0.

Proof. Let A = {eie: \(p'(eid)\ < e} where e satisfies ^f^ = §. Since

<p'(z) £ Hl, we have log¿ < ¿ ¡T\og\(p'(ew)\d6 < ¿|^|loge. Therefore

|^| < ^f^ - §. Hence E(e) = {eie £ E: \<p'(eie)\ > e} satisfies \E(e)\ > f.

This proves the lemma since ¡E \<p'(eie)\dd > JE{e] \<p'(eie)\dd > f e = K(s, a).

We now prove the theorem. The proof is technical and the reader should

make a drawing. We will construct Jordan domains A„ bounded by a finite
number of analytic arcs such that A„ c A„+i . The non-Smirnov domain will

be the union of A„ . By (pn(z) we mean the conformai mapping from D onto

A„ such that <pn(0) = 0 and <p'„(0) = Re<p'n(0) > 0.
Since A„ is bounded by finitely many analytic arcs, <pn(z) has a univalent

continuation to a domain Dn containing D. For n > 1, dDn meets T at a

finite number of points. We define (pn(Dn) = fi„ . These domains will satisfy

Q„ D Q„+i . For n > 1, d£ln will meet dAn at finitely many points. The
inverse of (pn(z) is denoted fn(z). We construct the domains inductively.

We define Ax = f(\z\ < rx), Dx = {\z\ < £} and ilx = f(\z\ < r2). We may

assume that /(0) = 0 and that f'(0) = Ref'(0) > 0. Then <px(z) = f(rxz) is
properly normalized. By dilation we may assume that |^'i(z)| < 1 for z £ D.
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Assume that A„ , D„ , Q„ and yn(z) have been constructed and that |^ó(z)l ^

1 for z £ D. Define an and A„ by

J \<p'n(e'e)\d6 = \dAn\ = 2n-an,

An = {eie : eie £ Dn , \9'n(ei6)\ < 1 - ^} .

This set satisfies fT,A \<p'n(e'e)\ < 2n - a„ . Therefore we have (2n - \An\)

•(1- %)<2n-an. This leads to \A„\ > ^ .
Let {Ik}(— {Ik,n}) be finitely many disjoint closed subarcs of An . Each

Ik has length less than f and is contained in a closed disc Ok meeting the

endpoints of Ik at an angle of §. The following conditions are satisfied:

(i)   OkcDn.

(Ü)   £|7*|>t-
(iii)   sup260t \(p'n(z)\ = pk < 1 - fj .
(iv)  diam Ok <b„ , where ô„ is a small number to be chosen later.

(v)   (infzec^ |#,(z)|)/jUfc > r„, where r„  is a number close to one to be

chosen later.

Replace Ik by a bubble as in Lemma 2 where yk satisfies \h'yk(zo)\ = pk . If no

such yfc exists, let yk = 5 . Recall the definition of Z)^ and let Z)* = (J Z)yi..
Note that ç>„(z) is univalent in D* and that (pn(D„) c ^« • Let hn(z) map

Z)* conformally onto D such that h„(0) = 0 and A;(0) > 0. If z e dD* and
|z| > 1, then z e CA for some k. Therefore \h'n(z)\ > \h'n(z)\ > \h'7k(z0)\ >

pk . The first inequality follows from Lemma 1, the second from Lemma 2, and

the third inequality follows from the the definition of yk .

We define An+X - tpn(D*). Then A„ c A„+i c Q«. The boundary of
A„+1 is rectifiable and consists of a finite number of analytic arcs. To prove

that |ç^+1(z)| < 1 for z £ D it suffices to prove that \f¡,+x(z)\ > 1 a.e.

on dAn+x. There are two cases. Assume that z 6 dAn+x n dAn and that

both f'n(z) and f'n+x(z) exist. This excludes only a finite number of points

on 0A„+i ndA„. By Lemma 1 we have that |/^+1(z)| > \fn(z)\ > 1. If
z £ dAn+x\dAn , then fn(z) £ CYk for some k . Note that f„+x(z) = hn(fn(z)).

Therefore |/;+1(z)| = \h'n(fn(z))\ • \fn(z)\ > pk ■ r^^ > pk • j-k = 1 by

(iii). This proves that |^+i(z)l < 1 in D and that |0A„+i| < 2n. Recall that
A„+1 cfi„ and that dQn meets dAn+x at a finite number of points. As before

<pn+x(z) has a univalent continuation to a domain Dn+X containing D such

that (dDn+x n 7") is finite. If necessary we decrease Dn+X by choosing dDn+x

close to T to obtain:

(1) tpn+x(D„+x) = Ün+X Cfl„._

(2) Any Jordan curve T in Q„+1  surrounding A„+i  must satisfy |T| >
" |öA„+1|-i.

We now prove that |<9A„| is increasing. It follows from (v) that

SCyk\<p'n(z)\ds     |c  ,

4i^(z)irfi - i/ti "■
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IC   I
Note that yk > c(l - pk) > cfg by Lemma 3 and (iii). By Lemma 4 -^r- >

g(c4o) = C > 1 • Combining these inequalities we obtain

/   \<p'n(z)\ds>Ç'rn [ \<p'n(z)\ds.
JCyk Jlk

We now choose r„ such that Crn = ^- = (. Consequently

|ÔA„+1|-|dA„| = W/   \<p'n(z)\ds- f \<p'n(z)\ds)
(*) k   ^ J'k '

>(C-1)E/ \<Pn(z)\ds=8{C™)~1  f   \<p'n(z)\ds
k Jlk L      Juh

this proves that |<9A„| is increasing.

Since |<9A„| < 2n it follows that lim^oo |<9A„| exists. Assume that this limit

equals 2n - a where a > 0. Then a„ > a for all n . Subordination, a variant

of Schwarz' lemma, proves that <p'n(0) > tp[(0) = S > 0. For all n we have that

I U7fc| > 5) • Apply Lemma 5 and (*) :

\dAn+x\-\dAn\>^^- [   \<p'n(z)\ds

This is a contradiction, hence lim|<9A„| = 2jt . Let A = \JA„ . To prove that

A is a Jordan domain recall that An = <pn(D) and that A„+[ = tp„(D*). By

construction every point of D* can be connected to a point in D by a line

segment of length less than bn . See (iv). Since |^(z)l < 1 everywhere in D*,

every point in An+X can be connected to a point in A„ by a curve of length

less than bn . By induction every point in A can be connected to a point in

An by a curve of length less than Yln>N bn ■ A domain is a Jordan domain

if and only if for every e > 0 there exists a ô > 0 such that any two points

closer together than S lie in a connected subset of diameter less than e . We

may assume that ö < e. For every N, AN is a Jordan domain. If e^ = ^

there exists ô^ corresponding to e^ that works for An . Choose the numbers

bn in (iv) such that Y,n>N bn < \SN. Let zx and z2 be two points in A such

that |zi - Z2I < ^f. For i = 1,2 choose curves K¡ of length less than ^f

connecting z, with w¡ £ AN . Then \wx - w2\ < ô^ . Choose a connected set
E c AN of diameter less than e^ such that w¡ £ E. The set (EuKx UK2) is
connected, has diameter less than 2&n , and contains z,. Hence A is a Jordan
domain.

Let <p(z) be the conformai mapping of D onto A normalized by <p(0) = 0

and q>'(0) — Req>'(0) > 0. Since <p'n(z) —► <p'(z) uniformly on compact sets, we

have that |9A| < 2n. Condition (2) shows that |dA| > |<9A„+.| - ¿ . Therefore
|<9A| = 2n and the proof is complete unless (p'(z) = 1. By the dilatation

argument in the beginning of the proof we may assume that Qx c {\z\ < \} .
Since A c Hi , this cannot be the case.
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