NON-SMIRNOV DOMAINS

KNUT ØYMA

(Communicated by Clifford J. Earle, Jr.)

ABSTRACT. If Ω is a Jordan domain, a small perturbation of the boundary gives a non-Smirnov domain.

Let D be the open unit disc and T its boundary. A conformal mapping f(z) from D onto a Jordan domain Ω extends to a homeomorphism between \overline{D} and $\overline{\Omega}$ (the closures). This was proved by Osgood and Taylor and independently by Carathéodory (1913). The boundary of Ω , $\partial \Omega$, is rectifiable if and only if $f'(z) \in H^1$. See [1]. The H^p spaces are treated in [2] and [4]. The length of $\partial \Omega$ is $|\partial \Omega| = \int_0^{2\pi} |f'(e^{i\theta})| \, d\theta$. Because f'(z) belongs to H^1 we have f'(z) = S(z)F(z), where S(z) is singular inner and F(z) is outer. There is no Blaschke factor since f(z) is univalent. If $S(z) \equiv 1$, then Ω is called a Smirnov domain. In such domains function theory inherits nice properties from the unit disc. See Chapter 10 of [2]. Non-Smirnov domains exist. An elegant proof is due to Duren, Shapiro, and Shields [3]. Keldysh and Lavrentiev gave the first example in 1937. A detailed version appears in the book of Privalov [6].

In this paper we will use the idea of Keldysh and Lavrentiev to show that the shape of such domains can roughly be prescribed. In particular the non-Smirnov domains are dense in the simply connected domains in the sense of Carathéodory.

Theorem. If f(z) is univalent in D, $0 < r_1 < r_2 < 1$, then there exists a non-Smirnov domain Δ such that $f(|z| < r_1) \subset \Delta \subset f(|z| < r_2)$. There exists a conformal mapping $\varphi(z)$ of D onto Δ such that $|\varphi'(e^{i\theta})| = \text{constant } a.e.$

The result has an interesting Brownian motion interpretation. Let I be a measurable subset of $\partial \Delta$. Consider a Brownian motion starting at $\varphi(0)$. The probability for the first exit from Δ to take place on I equals $|I|/|\partial \Delta|$. We need five lemmas.

Lemma 1 (Montel). Let $\Omega_1 \subset \Omega_2$ be Jordan domains bounded by finitely many analytic arcs. Assume that $f_i(z)$ maps Ω_i conformally onto D and that $f_1(z_0) = f_2(z_0)$ for some $z_0 \in \Omega_1$. If the open analytic arc Γ is contained in $\partial \Omega_1 \cap \partial \Omega_2$, then $|f_2'(z)| \geq |f_1'(z)|$ for every $z \in \Gamma$.

Received by the editors June 9, 1990 and, in revised form, July 13, 1993. 1991 Mathematics Subject Classification. Primary 30C20; Secondary 30D55.

1426 KNUT ØYMA

A proof is found in [6], p. 28.

Let I be a subarc of T of length $2\theta < \frac{\pi}{3}$. For $0 \le \gamma \le \frac{1}{2}$, C_{γ} is the part of a circle through the endpoints of I lying outside D making the angle $\gamma\pi$ with I. D_{γ} is the domain bounded by $(T \setminus I) \cup C_{\gamma}$. Let $h_{\gamma}(z)$ map D_{γ} conformally onto D such that $h_{\gamma}(0) = 0$. The midpoint of C_{γ} is z_0 .

Lemma 2. The minimum of $|h'_{\nu}(z)|$ for $z \in C_{\nu}$ is attained at z_0 .

$$|h_{\gamma}'(z_0)| = \frac{2}{1+\gamma} \cdot \frac{\tan \frac{\theta}{2(1+\gamma)} \cos^2 \frac{\theta+\gamma\pi}{2}}{\sin \theta}$$

A proof is in [6], p. 162.

We want to solve the equation $|h'_{\nu}(z_0)| = \mu < 1$ with respect to γ .

Lemma 3. There exists a constant c > 0 such that any solution γ of the equation $|h'_{\gamma}(z_0)| = \mu < 1$ satisfies $\gamma \ge c(1 - \mu)$.

Proof. By the mean value theorem we have

$$\mu-1=|h_{\gamma}'(z_0)|-|h_0'(z_0)|=\left(\frac{\partial}{\partial\gamma}|h_{\gamma}'(z_0)|\right)_{\gamma=t}\cdot\gamma$$

for some number t between 0 and γ .

Let $M = \operatorname{Max}\{|\frac{\partial}{\partial y}|h'_{y}(z_0)| | : 0 \le y \le \frac{1}{2}, 2\theta \le \pi/3\}$.

Then $1 - \mu \le M \cdot \gamma$. This proves the lemma with $c = M^{-1}$.

Lemma 4. There exists a strictly increasing function $g(\gamma)$ satisfying g(0) = 1 and $|C_{\gamma}| \ge g(\gamma)|I|$.

The proof uses simple geometry and is omitted.

Lemma 5. Let $\varphi(z)$ be analytic in D. Assume that $|\varphi'(z)| < 1$ and that $\varphi'(0) \ge \delta > 0$. If E is a measurable subset of T of length s > 0, then $\int_E |\varphi'(e^{i\theta})| d\theta \ge K = K(s, \delta) > 0$.

Proof. Let $A=\{e^{i\theta}\colon |\varphi'(e^{i\theta})|<\epsilon\}$ where ϵ satisfies $\frac{2\pi\log\delta}{\log\epsilon}=\frac{s}{2}$. Since $\varphi'(z)\in H^1$, we have $\log\delta\leq\frac{1}{2\pi}\int_T\log|\varphi'(e^{i\theta})|\,d\theta\leq\frac{1}{2\pi}|A|\log\epsilon$. Therefore $|A|\leq\frac{2\pi\log\delta}{\log\epsilon}=\frac{s}{2}$. Hence $E(\epsilon)=\{e^{i\theta}\in E\colon |\varphi'(e^{i\theta})|\geq\epsilon\}$ satisfies $|E(\epsilon)|\geq\frac{s}{2}$. This proves the lemma since $\int_E|\varphi'(e^{i\theta})|\,d\theta\geq\int_{E(\epsilon)}|\varphi'(e^{i\theta})|\,d\theta\geq\frac{s}{2}\epsilon=K(s,\delta)$.

We now prove the theorem. The proof is technical and the reader should make a drawing. We will construct Jordan domains Δ_n bounded by a finite number of analytic arcs such that $\Delta_n \subset \Delta_{n+1}$. The non-Smirnov domain will be the union of Δ_n . By $\varphi_n(z)$ we mean the conformal mapping from D onto Δ_n such that $\varphi_n(0) = 0$ and $\varphi_n'(0) = \text{Re } \varphi_n'(0) > 0$.

Since Δ_n is bounded by finitely many analytic arcs, $\varphi_n(z)$ has a univalent continuation to a domain D_n containing D. For n>1, ∂D_n meets T at a finite number of points. We define $\varphi_n(D_n)=\Omega_n$. These domains will satisfy $\Omega_n\supset\Omega_{n+1}$. For n>1, $\partial\Omega_n$ will meet $\partial\Delta_n$ at finitely many points. The inverse of $\varphi_n(z)$ is denoted $f_n(z)$. We construct the domains inductively.

We define $\Delta_1 = f(|z| < r_1)$, $D_1 = \{|z| < \frac{r_2}{r_1}\}$ and $\Omega_1 = f(|z| < r_2)$. We may assume that f(0) = 0 and that f'(0) = Re f'(0) > 0. Then $\varphi_1(z) = f(r_1 z)$ is properly normalized. By dilation we may assume that $|\varphi'_1(z)| \le 1$ for $z \in D$.

Assume that Δ_n , D_n , Ω_n and $\varphi_n(z)$ have been constructed and that $|\varphi'_n(z)| \le$ 1 for $z \in D$. Define a_n and A_n by

$$\int_{T} |\varphi'_{n}(e^{i\theta})| d\theta = |\partial \Delta_{n}| = 2\pi - a_{n},$$

$$A_{n} = \left\{ e^{i\theta} : e^{i\theta} \in D_{n}, |\varphi'_{n}(e^{i\theta})| < 1 - \frac{a_{n}}{20} \right\}.$$

This set satisfies $\int_{T\setminus A_n} |\varphi_n'(e^{i\theta})| \le 2\pi - a_n$. Therefore we have $(2\pi - |A_n|)$ $\cdot (1 - \frac{a_n}{20}) \le 2\pi - a_n$. This leads to $|A_n| \ge \frac{a_n}{2}$.

Let $\{I_k\}(=\{I_{k,n}\})$ be finitely many disjoint closed subarcs of A_n . Each I_k has length less than $\frac{\pi}{3}$ and is contained in a closed disc O_k meeting the endpoints of I_k at an angle of $\frac{\pi}{2}$. The following conditions are satisfied:

- (i) $O_k \subset D_n$. (ii) $\sum |I_k| > \frac{a_n}{4}$.
- (iii) $\sup_{z \in O_k} |\varphi'_n(z)| = \mu_k < 1 \frac{a_n}{40}$.
- (iv) diam $O_k < b_n$, where b_n is a small number to be chosen later.
- (v) $(\inf_{z \in O_k} |\phi'_n(z)|)/\mu_k > r_n$, where r_n is a number close to one to be

Replace I_k by a bubble as in Lemma 2 where γ_k satisfies $|h'_{\gamma_k}(z_0)| = \mu_k$. If no such γ_k exists, let $\gamma_k = \frac{1}{2}$. Recall the definition of D_{γ_k} and let $D_n^* = \bigcup D_{\gamma_k}$. Note that $\varphi_n(z)$ is univalent in D_n^* and that $\varphi_n(D_n^*) \subset \Omega_n$. Let $h_n(z)$ map D_n^* conformally onto D such that $h_n(0) = 0$ and $h_n'(0) > 0$. If $z \in \partial D_n^*$ and |z| > 1, then $z \in C_{\gamma_k}$ for some k. Therefore $|h'_n(z)| \ge |h'_{\gamma_k}(z)| \ge |h'_{\gamma_k}(z_0)| \ge$ μ_k . The first inequality follows from Lemma 1, the second from Lemma 2, and the third inequality follows from the the definition of γ_k .

We define $\Delta_{n+1} = \varphi_n(D_n^*)$. Then $\Delta_n \subset \Delta_{n+1} \subset \Omega_n$. The boundary of Δ_{n+1} is rectifiable and consists of a finite number of analytic arcs. To prove that $|\varphi'_{n+1}(z)| \le 1$ for $z \in D$ it suffices to prove that $|f'_{n+1}(z)| \ge 1$ a.e. on $\partial \Delta_{n+1}$. There are two cases. Assume that $z \in \partial \Delta_{n+1} \cap \partial \Delta_n$ and that both $f'_n(z)$ and $f'_{n+1}(z)$ exist. This excludes only a finite number of points on $\partial \Delta_{n+1} \cap \partial \Delta_n$. By Lemma 1 we have that $|f'_{n+1}(z)| \geq |f'_n(z)| \geq 1$. If $z \in \partial \Delta_{n+1} \setminus \partial \Delta_n$, then $f_n(z) \in C_{\gamma_k}$ for some k. Note that $f_{n+1}(z) = h_n(f_n(z))$. Therefore $|f'_{n+1}(z)| = |h'_n(f_n(z))| \cdot |f'_n(z)| \ge \mu_k \cdot \frac{1}{|\varphi'_n(f_n(z))|} \ge \mu_k \cdot \frac{1}{\mu_k} = 1$ by (iii). This proves that $|\varphi'_{n+1}(z)| \le 1$ in D and that $|\partial \Delta_{n+1}| \le 2\pi$. Recall that $\Delta_{n+1} \subset \Omega_n$ and that $\partial \Omega_n$ meets $\partial \Delta_{n+1}$ at a finite number of points. As before $\varphi_{n+1}(z)$ has a univalent continuation to a domain D_{n+1} containing D such that $(\partial D_{n+1} \cap T)$ is finite. If necessary we decrease D_{n+1} by choosing ∂D_{n+1} close to T to obtain:

- $(1) \quad \varphi_{n+1}(D_{n+1}) = \Omega_{n+1} \subset \Omega_n .$
- (2) Any Jordan curve Γ in $\overline{\Omega}_{n+1}$ surrounding Δ_{n+1} must satisfy $|\Gamma| \geq$ $|\partial \Delta_{n+1}| - \frac{1}{n}$.

We now prove that $|\partial \Delta_n|$ is increasing. It follows from (v) that

$$\frac{\int_{C_{\gamma_k}} |\varphi_n'(z)| \, ds}{\int_{I_k} |\varphi_n'(z)| \, ds} \ge \frac{|C_{\gamma_k}|}{|I_k|} r_n.$$

1428 KNUT ØYMA

Note that $\gamma_k \ge c(1-\mu_k) \ge c\frac{a_n}{40}$ by Lemma 3 and (iii). By Lemma 4 $\frac{|C_{\gamma_k}|}{|I_k|} \ge g(c\frac{a_n}{40}) = \zeta' > 1$. Combining these inequalities we obtain

$$\int_{C_{\gamma_k}} |\varphi'_n(z)| \, ds \ge \zeta' r_n \int_{I_k} |\varphi'_n(z)| \, ds.$$

We now choose r_n such that $\zeta' r_n = \frac{1+\zeta'}{2} = \zeta$. Consequently

$$|\partial \Delta_{n+1}| - |\partial \Delta_{n}| = \sum_{k} \left(\int_{C_{\gamma_{k}}} |\varphi'_{n}(z)| \, ds - \int_{I_{k}} |\varphi'_{n}(z)| \, ds \right)$$

$$\geq (\zeta - 1) \sum_{k} \int_{I_{k}} |\varphi'_{n}(z)| \, ds = \frac{g(c\frac{a_{n}}{40}) - 1}{2} \int_{\cup I_{k}} |\varphi'_{n}(z)| \, ds$$

this proves that $|\partial \Delta_n|$ is increasing.

Since $|\partial \Delta_n| \leq 2\pi$ it follows that $\lim_{n\to\infty} |\partial \Delta_n|$ exists. Assume that this limit equals $2\pi - a$ where a > 0. Then $a_n > a$ for all n. Subordination, a variant of Schwarz' lemma, proves that $\varphi_n'(0) \geq \varphi_1'(0) = \delta > 0$. For all n we have that $|\bigcup I_k| > \frac{a}{40}$. Apply Lemma 5 and (*):

$$\begin{aligned} |\partial \Delta_{n+1}| - |\partial \Delta_n| &\geq \frac{g(c\frac{a}{40}) - 1}{2} \int_{\cup I_k} |\varphi'_n(z)| \, ds \\ &\geq \frac{g(c\frac{a}{40}) - 1}{2} K\left(\frac{a}{40}, \delta\right) > 0. \end{aligned}$$

This is a contradiction, hence $\lim |\partial \Delta_n| = 2\pi$. Let $\Delta = \bigcup \Delta_n$. To prove that Δ is a Jordan domain recall that $\Delta_n = \varphi_n(D)$ and that $\Delta_{n+1} = \varphi_n(D_n^*)$. By construction every point of D_n^* can be connected to a point in D by a line segment of length less than b_n . See (iv). Since $|\varphi_n'(z)| < 1$ everywhere in D_n^* , every point in Δ_{n+1} can be connected to a point in Δ_n by a curve of length less than b_n . By induction every point in Δ can be connected to a point in Δ_N by a curve of length less than $\sum_{n\geq N} b_n$. A domain is a Jordan domain if and only if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that any two points closer together than δ lie in a connected subset of diameter less than ε . We may assume that $\delta < \varepsilon$. For every N, Δ_N is a Jordan domain. If $\varepsilon_N = \frac{1}{2N}$ there exists δ_N corresponding to ε_N that works for Δ_N . Choose the numbers b_n in (iv) such that $\sum_{n>N} b_n < \frac{1}{3}\delta_N$. Let z_1 and z_2 be two points in Δ such that $|z_1 - z_2| < \frac{\delta_N}{3}$. For i = 1, 2 choose curves K_i of length less than $\frac{\delta_N}{3}$ connecting z_i with $w_i \in \Delta_N$. Then $|w_1 - w_2| < \delta_N$. Choose a connected set $E \subset \Delta_N$ of diameter less than ε_N such that $w_i \in E$. The set $(E \cup K_1 \cup K_2)$ is connected, has diameter less than $2\varepsilon_N$, and contains z_i . Hence Δ is a Jordan domain.

Let $\varphi(z)$ be the conformal mapping of D onto Δ normalized by $\varphi(0)=0$ and $\varphi'(0)=\operatorname{Re}\varphi'(0)>0$. Since $\varphi'_n(z)\to\varphi'(z)$ uniformly on compact sets, we have that $|\partial\Delta|\leq 2\pi$. Condition (2) shows that $|\partial\Delta|\geq |\partial\Delta_{n+1}|-\frac{1}{n}$. Therefore $|\partial\Delta|=2\pi$ and the proof is complete unless $\varphi'(z)\equiv 1$. By the dilatation argument in the beginning of the proof we may assume that $\Omega_1\subset\{|z|<\frac{1}{2}\}$. Since $\Delta\subset\Omega_1$, this cannot be the case.

REFERENCES

- 1. E. F. Collingwood and A. J. Lohwater, *The theory of cluster sets*, Cambridge Univ. Press, Cambridge and New York, 1966.
- 2. P. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- 3. P. Duren, H. S. Shapiro, and A. Shields, Singular measures and domains not of Smirnov type, Duke Math. J. 33 (1966), 247-254.
- 4. J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- 5. M. W. Keldysh and M. A. Lavrentiev, Sur la représentation conforme des domaines limités par des courbes rectifiables, Ann. Sci. École Norm. Sup. 54 (1937), 1-38.
- 6. I. I. Privalov, Randeigenschaften analytischer Funktionen, Deutscher Verlag, Berlin, 1956.

DEPARTMENT OF MATHEMATICS, AGDER COLLEGE, 4604 KRISTIANSAND, NORWAY