WEAK CONVERGENCE AND WEAK COMPACTNESS IN ABSTRACT M SPACES

SHUTAO CHEN AND HUIYING SUN

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. This paper presents some properties of bounded linear functionals on σ complete abstract M spaces, from which some criteria for weak convergence and weak compactness in such spaces are obtained.

1. Abstract M spaces and abstract L spaces

Definition 1 [1, 2]. Let X be a Banach lattice.

(1) X is called an abstract M space $(X \in AM)$ if $x \land y = 0$ implies

$$||x + y|| = \max\{||x||, ||y||\}.$$

(2) X is called an abstract L space $(X \in AL)$ if $x \land y = 0$ implies

$$||x + y|| = ||x|| + ||y||.$$

For a Banach lattice X and $x \in X$, $f, g \in X^*$, as in [1], we define

$$(f \lor g)(x) = \sup\{f(u) + g(x - u) : 0 \le u \le x\}$$
 $(x \ge 0),$

$$(f \land g)(x) = \inf\{f(u) + g(x - u) : 0 < u < x\}$$
 $(x > 0).$

Then by Theorem 118.1 and 118.5 in [3], we have

Lemma 2. Let X be a Banach lattice. Then

- (1) $X \in AM$ implies $X^* \in AL$ and $X \in AL$ implies $X^* \in AM$;
- (2) $X \in AM$ iff for any $x, y \in X$, $x, y \ge 0$ implies

$$||x \vee y|| = \max\{||x||, ||y||\};$$

(3) $X \in AL$ iff for any $x, y \in X$, $x, y \ge 0$ implies

$$||x + y|| = ||x|| + ||y||.$$

Let X be a lattice and x, u, $v \in X$ and $u \ge 0$, $v \ge 0$. By Theorem 11.8 and 11.10 in [2], if x = u - v, then $u = x^+ + u \wedge v$ and $v = x^- + u \wedge v$, where $x^+ = x \vee 0$ and $x^- = (-x) \vee 0$. Especially, if $u \wedge v = 0$, then $u = x^+$ and $v = x^-$. If $X \in AL$, then $||x|| = ||x^+|| + ||x^-||$ and by Lemma 2, $||u|| = ||x^+|| + ||u \wedge v||$, $||v|| = ||x^-|| + ||u \wedge v||$. Hence, we have

Received by the editors June 21, 1993 and, in revised form, August 9, 1993.

1991 Mathematics Subject Classification. Primary 46B42.

Key words and phrases. Banach lattice, abstract M spaces, weak convergence, weak compactness, extreme point.

The authors are supported by the National Science Foundation of China and the Heilongjiang Science Foundation.

Lemma 3. Let $X \in AL$ and $x \in X$. Then the above decomposition $x = x^+ - x^-$ is unique in the sense that if x = u - v, $u \ge 0$, $v \ge 0$, and ||u|| + ||v|| = ||x||, then $u = x^+$ and $v = x^-$.

For a subset E of a Banach lattice X and $x \in X$, we write

$$E^{\perp} = \{x \in X : x \perp y \text{ for all } y \in E\}, \qquad x^{\perp} = \{x\}^{\perp},$$

where $x \perp y$ means $|x| \wedge |y| = 0$. If $x \in X = E + E^{\perp}$, then x can be uniquely decomposed into x = u + v, where $u \in E$ and $v \in E^{\perp}$. In this case, we write $x|_E = u$ and $f|_E(x) = f(u)$ for $f \in X^*$.

Definition 4. Let X be a Banach lattice. Then

- (a) X is said to be σ complete, if for every order bounded sequence $\{x_n\}$ in X, $\bigvee_{n>1}(x_n)$ exists in X.
- (b) X is said to be bounded σ complete, provided that any norm bounded and order monotone sequence in X is order convergent.

Clearly, bounded σ complete Banach lattices are σ complete. The inverse does not hold; for instance, c_0 is σ complete but not bounded σ complete. Moreover, according to [1], the space C(K) of all continuous functions on a compact Hausdorff topological space K is σ complete if and only if K is basically disconnected, i.e., the closure of every open F_{σ} subset of K is an open set.

For more detail about Banach lattices, also see [4] and [5].

2. Bounded linear functionals on abstract M spaces

For a Banach space X, we always denote by B(X) and S(X) the unit ball and the unit sphere of X respectively.

Theorem 5. Let $X \in AM$ be σ complete and $f \in X^*$. Then for any $\varepsilon > 0$, there exists a subspace E of X such that $X = E + E^{\perp}$ and $||f^+||_{E^{\perp}}|| < \varepsilon$, $||f^-||_E|| < \varepsilon$.

Proof. Pick $x \in S(X)$ satisfying $f(x) > ||f|| - \varepsilon$, and set $E = (x^-)^{\perp}$. Then $x^+ \in E$, $x^- \in E^{\perp}$, and by [1] $X = E + E^{\perp}$. Moreover, by Lemma 2,

$$\begin{split} \|f^{+}|_{E}\| + \|f^{+}|_{E^{\perp}}\| + \|f^{-}|_{E}\| + \|f^{-}|_{E^{\perp}}\| \\ &= \|f^{+}\| + \|f^{-}\| = \|f\| < f(x) + \varepsilon \\ &= f^{+}|_{E}(x) + f^{+}|_{E^{\perp}}(x) - f^{-}|_{E}(x) - f^{-}|_{E^{\perp}}(x) + \varepsilon. \end{split}$$

Since $f^+|_{E^{\perp}}(x) \le 0$ and $f^-|_{E}(x) \ge 0$, we find

$$||f^{+}|_{E^{\perp}}|| + ||f^{-}|_{E}||$$

$$= ||f^{+}|| - ||f^{+}|_{E}|| + ||f^{-}|| - ||f^{-}|_{E^{\perp}}||$$

$$\leq ||f^{+}|| - f^{+}|_{E}(x) + ||f^{-}|| - f^{-}|_{E^{\perp}}(x)$$

$$< f^{+}|_{E^{\perp}}(x) - f^{-}|_{E}(x) + \varepsilon \leq \varepsilon. \quad \Box$$

Theorem 6. If a Banach lattice X is bounded σ complete and B(X) is order closed, then every positive $f \in X^*$ (i.e., $f \ge 0$) is norm attainable, i.e., there exists $x \in S(X)$ satisfying f(x) = ||f||.

Proof. Pick $x_n(\geq 0) \in S(X)$ such that $f(x_n) \to ||f||$. Since X is bounded σ complete and B(X) is order closed, $y = \bigvee_n (x_n)$ exists in X and ||y|| = 1. Hence, $y \geq x_n \geq 0$ and $f \geq 0$ implies $||f|| \geq f(y) \geq f(x_n) \to ||f||$. \square

Remark. If $X \in AM$ is not bounded σ complete, then the conclusion of Theorem 6 may be false. For instance, if $X = c_0$ and $f = (c_n) \in l_1$ with infinitely many $c_n \neq 0$, then f is not norm attainable.

If B(X) is not order closed, then the statement of the theorem is not necessarily true. For example, take $X = l_{\infty}$ and define

$$|||x||| = \sup_{n>1} \left\{ |x_n|, k \cdot \limsup_{i \to \infty} |x_i| \right\}, \quad x = (x_n) \in l_{\infty},$$

where k > 1 is a constant. Then the norm $||| \cdot |||$ satisfies $||x||_{\infty} \le |||x||| \le k||x||_{\infty}$ for all $x \in l_{\infty}$ and $||x||_{\infty} = |||x|||$ for all $x \in c_0$. But for any bounded linear functional $f = (c_n) \in l_1$ on l_{∞} with infinitely many $c_n \ne 0$, f cannot attain its norm on $B(l_{\infty}, ||| \cdot |||)$.

Theorem 7. Let $X \in AM$ be bounded σ complete and B(X) order closed. Then $f \in X^*$ is norm attainable iff there exists a subspace E of X such that $f^+ = f|_{E}$, $f^- = -f|_{E^{\perp}}$.

Proof. Sufficiency. By Theorem 6, there exist $x, y \ge 0 \in S(X)$ such that $f^+(x) = \|f^+\|$ and $f^-(y) = \|f^-\|$. Since $f^+ = f|_E$ and $f^- = -f|_{E^\perp}$, we may assume $x \in E$ and $y \in E^\perp$ (otherwise we replace x, y by $x|_E, y|_{E^\perp}$ respectively). Let u = x - y. Then $\|u\| = \|x - y\| = \max\{\|x\|, \|y\|\} = 1$ and hence, Lemma 2 implies

$$||f|| = ||f^+|| + ||f^-|| = f^+(x) + f^-(y)$$

= $f|_{E}(x) + f|_{E^{\perp}}(-y) = f(u)$.

Necessity. Choose $x \in S(X)$ satisfying $f(x) = \|f\|$, and define $E = (x^-)^{\perp}$. Then $X = E + E^{\perp}$ and $x^+ \in E$, $x^- \in E^{\perp}$. Observe that $\|f\| = \|f|_E\| + \|f|_{E^{\perp}}\|$; to prove $f^+ = f|_E$ and $f^- = -f|_{E^{\perp}}$, it suffices to show $f|_E \ge 0$ and $-f|_{E^{\perp}} \ge 0$ thanks to Lemma 3. Indeed, if $f|_E(y) < 0$ for some $y(\ge 0) \in S(X)$, then we may assume $y \in E$. Therefore, $z = -x^- - y$ satisfies $\|z\| = \max\{\|x^-\|, \|y\|\} = 1$ and thus,

$$||f^-|| \ge f^-(-z) = f(z) - f^+(z) \ge f(z)$$

$$= f|_{E^{\perp}}(-x^-) - f|_{E}(y) > f|_{E^{\perp}}(-x^-) = -f|_{E^{\perp}}(x).$$

Since $||f^+|| \ge f(x|_E) = f|_E(x)$, this leads to a contradiction that

$$\|f\| = \|f^+\| + \|f^-\| > f|_E(x) - f|_{E^\perp}(x) = f(x) = \|f\|.$$

Similarly, we can verify $-f|_{E^{\perp}} \ge 0$. \square

Definition 8 [6]. Let X be a Banach space. $x \in S(X)$ is called an extreme point of B(X) if $x = \lambda y + (1 - \lambda)z$, y, $z \in B(X)$ and $\lambda \in (0, 1)$, imply y = z. In this case, we write $x \in \text{ext } B(X)$.

Since by the Rainwater Theorem [6], $x_n \to 0$ weakly in a Banach space X iff $\{x_n\}$ is bounded, and $f(x_n) \to 0$ for every $f \in \text{ext } B(X^*)$, we are encouraged to investigate the extreme points of the unit ball of a dual space.

Theorem 9. Let $X \in AM$ be σ complete and $f \in S(X^*)$. Then $f \in \text{ext } B(X^*)$ iff f(x)f(y) = 0 for all $x, y \in X$ satisfying $x \wedge y = 0$.

Proof. Sufficiency. First we show $||f^+|| ||f^-|| = 0$. In fact, for any $\varepsilon > 0$, by Theorem 5, there exist two orthogonal subspaces E, F of X such that

X=E+F and $\|f^-|_E\|<\varepsilon$, $\|f^+|_F\|<\varepsilon$. Choose $x\in S(X)$ such that $f(x)>\|f\|-\varepsilon$, and let x=u+v, where $u\in E$ and $v\in F$. Then f(u)f(v)=0 since $u\wedge v=0$. If f(v)=0, then

$$||f|| - \varepsilon < f(x) = f^+|_E(u) - f^-|_E(u)$$

 $\leq ||f^+|_E|| + ||f^-|_E|| < ||f^+|| + \varepsilon.$

Letting $\varepsilon \to 0$, we find $||f^-|| = ||f|| - ||f^+|| = 0$. Similarly, if f(u) = 0. Then $||f^+|| = 0$. Hence, without loss of generality, we may assume $f = f^+$.

Let $g, h \in S(X^*)$ satisfy 2f = g + h. Then $2f = (g^+ + h^+) - (g^- + h^-)$ and by Lemma 2,

$$||2f|| \le ||g^+|| + ||h^+|| + ||g^-|| + ||h^-||$$

= $||g|| + ||h|| = 2 = ||2f||$.

It follows from Lemma 3 that $g^+ + h^+ = 2f$ and $g^- = h^- = 0$.

Now we show g=h=f, i.e., $f\in \operatorname{ext} B(X^*)$. This follows if we prove that g(y)=h(y)=0 whenever f(y)=0 (by [7, §1.5, Theorem 1], this means f=ag=bh, but $f,g,h\in S(X^*)$ and 2f=g+h, so a=b=1). First we assume $y\geq 0$; then from $g(y)\geq 0$, $h(y)\geq 0$, and g(y)+h(y)=2f(y)=0 we have g(y)=h(y)=0. For the general case, since f(y)=0 and by the condition given in the theorem, $f(y^+)f(y^-)=0$, we have $f(y^+)=f(y^-)=0$. Hence, g(y)=h(y)=0 follows from the first case.

Necessity. If there exist $x, y \in X$ satisfying $x \wedge y = 0$ but f(x) > 0 and f(y) > 0, then we set $E = y^{\perp}$, and then by [1] $X = E + E^{\perp}$. Let $g = f|_E$ and $h = f|_{E^{\perp}}$. Then ||g|| > 0, ||h|| > 0 since $x \in E$, $y \in E^{\perp}$. Therefore, from

$$f = \|g\| \frac{g}{\|g\|} + \|h\| \frac{h}{\|h\|}$$

and ||g|| + ||h|| = ||f|| = 1 according to Lemma 2, we see $f \in \text{ext } B(X^*)$. \square

3. Weak convergence and weak compactness in abstract M spaces We begin with a lemma.

Lemma 10. Let X be a σ complete lattice. Then for any $x_1, \ldots, x_m \in X$, X can be decomposed into m many pairwise orthogonal subspaces. $X = E_1 + \cdots + E_m$ such that $(x_n - \bigwedge_{1 \le m} (x_i))|_{E_n} = 0$, $1 \le n \le m$.

Proof. Since for any x, y, $z \in X$, $(x - z) \land (y - z) = x \land y - z$, replacing z by $x \land y$, we obtain

$$(*) (x - x \wedge y) \perp (y - x \wedge y).$$

Set $\bigwedge_{1 \le n \le m}(x_n) = x'$ and $E_1 = (x_1 - x')^{\perp}$. Then by [1], $X = E_1 + E_1^{\perp}$. Moreover, replacing x, y by x_1 , $\bigwedge_{2 \le n \le m}(x_n)$ in (*) respectively, we see

$$(x_1 - x')|_{E_1} = 0,$$
 $\left(\bigwedge_{2 \le n \le m} (x_n) - x' \right)|_{E_1^{\perp}} = 0.$

Let $E_2=\{x\in E_1^\perp: x\perp (x_2-x')|_{E_1^\perp}\}$. Then we also have $E_1^\perp=E_2+E_2^\perp\cap E_1^\perp$. Again by (*) (replace x, y by $x_2|_{E_1^\perp}$, $\bigwedge_{3\leq n\leq m}(x_n)$ respectively there), we have

$$(x_2 - x')|_{E_2} = 0,$$
 $\left(\bigwedge_{3 \le n \le m} (x_n) - x' \right)|_{E_2^{\perp}} = 0.$

And so on, we find pairwise orthogonal subspaces $E_1, \ldots, E_{m-1}, E_m = E_{m-1}^{\perp} \cap E_{m-2}^{\perp}$ of X such that $X = E_1 + \cdots + E_m$ and $(x_n - x')|_{E_n} = 0$, $n \le m$. \square

Theorem 11. Let $X \in AM$ be σ complete. Then $x_n \to 0$ weakly in X iff $\{x_n\}$ is bounded and $\lim_{m\to\infty} \|\bigwedge_{i\leq m} (|x_{n_i}|)\| = 0$ for all subsequences $\{x_{n_i}\}$ of $\{x_n\}$.

Proof. Sufficiency. If $\{x_n\}$ does not converge to zero weakly, then by the Rainwater Theorem there exist some $f \in \operatorname{ext} B(X^*)$, $\varepsilon > 0$, and a subsequence of $\{x_n\}$, again denoted by $\{x_n\}$, such that $f(x_n) > \varepsilon$ for all $n \ge 1$. Since by the proof of Theorem 9, $f^+ = 0$ or $f^- = 0$ and $f(x_n) = f^+(x_n^+) + f^-(x_n^-) - f^-(x_n^+) - f^+(x_n^-)$, without loss of generality, we may assume $f \ge 0$ and $x_n \ge 0$ for all $n \ge 1$. Choose $m \ge 1$ such that $\|\bigwedge_{n \le m} (x_n)\| < \varepsilon$. Then by Lemma 10, X can be decomposed into the direct sum of pairwise orthogonal subspaces E_1, \ldots, E_m such that $x_n|_{E_n} = x'|_{E_n}$ for all $n \le m$, where $x' = \bigwedge_{n \le m} (x_n)$. By Theorem 9, there exists some $n \le m$ such that $f = f|_{E_n}$ which leads to a contradiction that

$$\varepsilon < f(x_n) = f(x_n|_{E_n}) = f(x'|_{E_n}) \le ||f|| \cdot ||x'|| < \varepsilon.$$

Necessity. Suppose that $x_n \to 0$ weakly in X. If the condition is not necessary, then there exist a constant $\varepsilon > 0$ and a subsequence of $\{x_n\}$, again denoted by $\{x_n\}$, satisfying $\|\bigwedge_{n \le m}(|x_n|)\| > 2\varepsilon$ for all $m \ge 1$. We first define $y_1^1 = x_1^+$ and $y_2^1 = x_1^-$. Suppose that $\{y_s^k : s \le 2^k, k \le m\}$ have already been defined. Then we set $y_{2s-1}^{m+1} = y_s^m \wedge x_{m+1}^+$ and $y_{2s}^{m+1} = y_s^m \wedge x_{m+1}^-$. By induction, we find $\{y_i^m\}$ satisfying $y_i^m \wedge y_j^m = 0$ for all $m \ge 1$ and all $i, j \le 2^m$ with $i \ne j$, and moreover, for any $k \le m$, we have either $x_k^+ \wedge y_s^m = 0$ or $x_k^- \wedge y_s^m = 0$ for each $s = 1, 2, \ldots, 2^m$. Hence, if we pick $j \le 2^m$ such that $z_m = y_j^m$ satisfies $\|z_m\| = \max_{j \le 2^m} \|y_j^m\|$, then

$$||z_m|| = \left|\left|\sum_{i\leq 2^m} y_i^m\right|\right| = \left|\left|\bigwedge_{n\leq 2^m} (x_n)\right|\right| > 2\varepsilon.$$

Next, we select $f_m \in S(X^*)$ such that $f_m(z_m) = \|z_m\|$. Since $z_m \ge 0$ and $X^* \in AL$, we must have $f_m \ge 0$. In view of the Alaoglu Theorem [6], $\{f_m\}$ has a w^* -cluster $f \in B(X^*)$. It follows that for each fixed $n \ge 1$, we can find some $m \ge n$ such that $|f(x_n) - f_m(x_n)| < \varepsilon$. Let $F_m = z_m^{\perp}$ and $E_m = F_m^{\perp}$. Then $X = E_m + F_m$ by [1]. Note that $X^* \in AL$ implies $\|f_m\| = \|f_m\|_{E_m}\| + \|f_m\|_{F_m}\|$; from the fact

$$1 \ge \|f_m|_{E_m}\| \ge f_m\left(\frac{z_m}{\|z_m\|}\right) = 1$$

we see $||f_m||_{F_m}||=0$. Since by the choice of z_m , $m \ge n$ implies that $x_n^+ \wedge z_m = 0$ or $x_n^- \wedge z_m = 0$, we may assume $x_n^+ \wedge z_m = 0$. Thus, $x_n^-|_{E_m} \ge z_m|_{E_m}$, and so

$$|f(x_n)| \ge |f_m(x_n)| - |f(x_n) - f_m(x_n)|$$

$$> |f_m(x_n)| - \varepsilon = |f_m|_{E_m}(x_n)| - \varepsilon$$

$$\ge |f_m|_{E_m}(z_m) - \varepsilon = |f_m(z_m) - \varepsilon|$$

$$= ||z_m|| - \varepsilon > \varepsilon,$$

which contradicts the hypothesis that $x_n \to 0$ weakly. \Box

Theorem 12. Let X be a dual σ complete AM space. Then a bounded subset A of X is weakly compact iff

$$\sup_{(x_n)\subset A} \lim_{m\to\infty} \inf_{x\in K} \left\| \bigwedge_{n\leq m} (|x_n-x|) \right\| = 0$$

where $K = K(x_n)$ is the set of sequentially w^* -clusters of $\{x_n\}$ and, as usual, we denote $\inf\{r: r \in E\} = +\infty$ for $E = \emptyset$.

Proof. Necessity. Let A be a weakly compact subset of X. Then for any sequence $\{x_n\}$ in A we can pick a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ weakly convergent to some point x in X and then obviously $x \in K = K(x_n)$. Therefore, it follows from Theorem 11

$$0 = \lim_{m \to \infty} \left\| \bigwedge_{i \le m} (|x_{n_i} - x|) \right\|$$

$$\geq \lim_{m \to \infty} \left\| \bigwedge_{n \le m} (|x_n - x|) \right\|$$

$$\geq \lim_{m \to \infty} \inf_{y \in K} \left\| \bigwedge_{n \le m} (|x_n - y|) \right\| \geq 0.$$

Sufficiency. For any sequence $\{x_n\}$ in A, by the given condition, $K = K(x_n) \neq \emptyset$, hence, $\{x_n\}$ contains a subsequence, again denoted by $\{x_n\}$, w^* -convergent to some point $x \in K$. Hence, for any subsequence $\{x_{n_i}\}$ of this subsequence, $K' = K(x_{n_i}) = \{x\}$ implies

$$\lim_{m\to\infty} \left\| \bigwedge_{i\leq m} (|x_{n_i}-x|) \right\| = \lim_{m\to\infty} \inf_{y\in K'} \left\| \bigwedge_{i\leq m} (|x_{n_i}-y) \right\| = 0.$$

By Theorem 11, $x_n \to x$ weakly. \square

Remark 1. Replacing X in Theorem 11 or Theorem 12 by L_{∞} or l_{∞} , we obtain criteria of weak convergence and weak compactness for those spaces. But for $X = l_{\infty}$, since w^* -convergence of a bounded sequence in X coincides with convergence in coordinates, which is also equivalent to weak convergence in $X = c_0$, we can prove, without any difficulties, the following corollary and from which one can easily deduce the relative results given in [8].

Corollary 13. A bounded subset A of l_{∞} or c_0 is weakly compact iff

$$\sup_{(x_n)\subset A}\lim_{m\to\infty}\left\|\liminf_{k\to\infty}\min_{n\le m}(|x_n-x_k|)\right\|=0.$$

Remark 2. By [1], if an AM space X has a strong unit e, i.e., $x \in B(X)$ if and only if $|x| \le e$, then X is order isometric to a C(K) space for an appropriate compact Hausdorff space K. However, in this paper, the AM spaces are not assumed to have any units.

REFERENCES

- 1. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II, Springer-Verlag, Berlin and New York, 1979.
- 2. W. A. J. Luxemburg and A. C. Zaanen, *Riesz spaces*. I, North-Holland, Amsterdam and London, 1971.
- 3. A. C. Zaanen, Riesz spaces. II, North-Holland, Amsterdam, New York, and Oxford, 1983.
- 4. L. V. Kantorovitch, B. Z. Vulih, and A. G. Pinsker, Functional analysis in partially order spaces, Gosudarstr, Izdat. Tehn. Teor. Lit., Moscow and Leningrad, 1950. (Russian)

- 5. K. Yosida, Functional analysis, Springer-Verlag, Berlin and New York, 1978.
- 6. J. Diestel, Sequences and series in Banach spaces, Springer-Verlag, Berlin and New York,
- 7. A. Wilansky, Modern methods in topological vector spaces, McGraw-Hill, New York, 1987.
- 8. N. Dunford and J. T. Schwartz, Linear operators, Interscience, New York, 1958.

DEPARTMENT OF MATHEMATICS, HARBIN NORMAL UNIVERSITY, HARBIN, CHINA

Current address: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242 E-mail address: schen@math.uiowa.edu

DEPARTMENT OF MATHEMATICS, HARBIN INSTITUTE OF TECHNOLOGY, HARBIN, CHINA Current address: Department of Mathematics, University of Memphis, Memphis, Tennessee 38152

E-mail address: sunh@hermes.msci.memst.edu