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WEAK CONVERGENCE AND WEAK COMPACTNESS
IN ABSTRACT M SPACES
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(Communicated by Palle E. T. Jorgensen)

Abstract. This paper presents some properties of bounded linear functionals

on a complete abstract M spaces, from which some criteria for weak conver-

gence and weak compactness in such spaces are obtained.

1. Abstract M spaces and abstract L spaces

Definition 1 [1, 2]. Let X be a Banach lattice.
( 1 ) X is called an abstract M space (X £ AM) if x A y = 0 implies

||x + y|| = max{||x||,|M|}.

(2) X is called an abstract L space (X £ AL) if x A y - 0 implies

\\x + y\\ = \\x\\ + \\y\\.

For a Banach lattice X and x £ X, f, g £ X*, as in [1], we define

(/ V g)(x) = sup{/(w) + g(x - u) : 0 < u < x}       (x>0),

(f A g)(x) = inf\f(u) + g(x-u):0<u<x]       (x > 0).

Then by Theorem 118.1 and 118.5 in [3], we have

Lemma 2. Let X be a Banach lattice. Then

(\) X £ AM implies X* £ AL and X £ AL implies X* £ AM;
(2) X £ AM iff for any x, y £ X, x, y>0 implies

||xVy|| = max{||x||,||y||};

(3) X £ AL iff for any x, y £ X, x, y > 0 implies

II*+y|| = 11*11+ IMI-
Let X be a lattice and x, u, v £ X and u > 0, v > 0. By Theorem 11.8

and 11.10 in [2], if x = u - v , then u = x+ + u A v and v = x~ + u A v ,

where x+ = x V 0 and x~ - (-x) V 0. Especially, if u A v = 0, then u — x+

and v = x~ . If X £ AL, then ||;c|| = ||;c+|| + ||x~|| and by Lemma 2, ||m|| =

||x+|| + ||m A v\\, \\v\\ = \\x~\\ + \\u A v\\. Hence, we have
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Lemma 3. Let X £ AL and x £ X. Then the above decomposition x = x+-x~

is unique in the sense that if x — u-v, u>0, v >0, and \\u\\ + \\v\\ = \\x\\,
then u — x+ and v = x~ .

For a subset E of a Banach lattice X and x £ X ,v/e write

E1- = {x £ X : x JL y for all y £ E},       xx = {x}x ,

where x ± y means |x| A \y\ — 0. If x £ X = E + E1, then x can be uniquely
decomposed into x = u + v , where u £ E and v £ EL . In this case, we write

x\ e = u and /| E(x) = f(u) for f £ X*.

Definition 4. Let X be a Banach lattice. Then
(a) X is said to be o complete, if for every order bounded sequence {x„}

in X, y„>x(x„) exists in X.

(b) X is said to be bounded a complete, provided that any norm bounded
and order monotone sequence in X is order convergent.

Clearly, bounded a complete Banach lattices are a complete. The inverse
does not hold; for instance, en is a complete but not bounded a complete.

Moreover, according to [1], the space C(K) of all continuous functions on a

compact Hausdorff topological space K is o complete if and only if K is

basically disconnected, i.e., the closure of every open Fa subset of K is an
open set.

For more detail about Banach lattices, also see [4] and [5].

2. Bounded linear functionals on abstract M spaces

For a Banach space X, we always denote by B(X) and S(X) the unit ball
and the unit sphere of X respectively.

Theorem 5. Let X £ AM be a complete and f £ X*. Then for any e > 0,
there exists a subspace E of X such that X = E + E1- and ||/+|£j-|| < e,

ll/-|*ll<e-
Proof. Pick x £ S(X) satisfying f(x) > \\f\\ - e, and set E = (x~)x . Then
x+ £ E, x~ £ E1-, and by [1] X = E + E1-. Moreover, by Lemma 2,

ii/+i£ii + ii/+i^n + iiri£ii + ii/-|^ii
= ii/+ii + ii/-ii = ii/ii </(*)+«
= f+\E(x) + f+\E±(x)-f-\E(x)-f-\E^(x) + e.

Since f+\E±(x) < 0 and f~\E(x) > 0, we find

n/+Ux|i+nru!i
= ii/+ii-ii/+i£ii + ii/-ii-ii/-i^ii
<iirii-/+uw + iirn-/-|£x(x)
<f+\E±(x)-f-\E(x) + e<e.   D

Theorem 6. If a Banach lattice X is bounded a complete and B(X) is order

closed, then every positive f £ X* (i.e., f > 0) is norm attainable, i.e., there

exists x £ S(X) satisfying f(x) = ||/||.

Proof. Pick x„(> 0) £ S(X) such that f(x„) -* \\f\\. Since X is bounded a
complete and B(X) is order closed, y = \/n(xn) exists in X and ||y|| = 1.

Hence, y > xn > 0 and / > 0 implies ||/|| > f(y) > f(xn) - ||/||.   D
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Remark. If X £ AM is not bounded o complete, then the conclusion of The-

orem 6 may be false. For instance, if X = en and / = (c„) £ lx with infinitely

many c„ ^ 0, then / is not norm attainable.
If B(X) is not order closed, then the statement of the theorem is not neces-

sarily true. For example, take X = l^ and define

|||x||| = sup< \xn\, k •limsup|x,| > ,    x — (x„) £ /<»,
n>\   I /'—»oo J

where k > 1 is a constant. Then the norm ||| • ||| satisfies ||jc||oo < IIMH <

/cllxlloo for all x £ loo and Halloo = |||x||| for all x £ Co ■ But for any bounded

linear functional f — (cn) £ h on l^ with infinitely many c„ ^ 0, / cannot

attain its norm on B(loo , III • III) •

Theorem 7. Let X £ AM be bounded a complete and B(X) order closed.

Then f £ X* is norm attainable iff there exists a subspace E of X such that

f+ = f\E,  /- = -/Ux.
Proof. Sufficiency. By Theorem 6, there exist x, y(> 0) £ S(X) such that

f+(x) = H/+II and f'(y) = ||/-||. Since /+ = f\E and /" = -/|£i , we
may assume x £ E and y £ EL (otherwise we replace x, y by x\e, y\E±
respectively). Let u — x-y. Then ||m|| = ||jc -y|| = max{||x||, ||y||} = 1 and

hence, Lemma 2 implies

ll/ll = ll/+ll + ll/-|| = /+(*) + /-(>')
= f\ E(x) + f\Ex(-y) = /(«).

Necessity. Choose x £ S(X) satisfying f(x) = \\f\\, and define E = (x~)x .
Then X = E + EL and x+ £ E, x' £ EL. Observe that ||/|| = ||/|£|| +

ll/l £x || ; to prove /+ = f\ E and /- = -f\ E± , it suffices to show f\ E > 0
and -/| ¿j. > 0 thanks to Lemma 3. Indeed, if f\ s(y) < 0 for some y(> 0)
£ S(X), then we may assume y £ E. Therefore, z = -x~ - y satisfies

||z|| = max{||x-||,||y||}=l and thus,

\\f-\\>f-(-z) = f(z)-r(z)>f(z)
= f\E±(-x-)-f\E(y)>f\E,(-x-) = -f\E,(x).

Since II/+H > /(x| E) = f\ E(x), this leads to a contradiction that

ii/ii = uni + urn > /i^w-zi^w = /(*) = ii/ii-
Similarly, we can verify —f\ E± > 0.   D

Definition 8 [6]. Let X be a Banach space, x £ S(X) is called an extreme

point of B(X) if x = ky + (1 -A)z, y, z £ B(X) and A £ (0, 1), imply
y - z. In this case, we write x £ extB(X).

Since by the Rainwater Theorem [6], xn —> 0 weakly in a Banach space X iff

{jc„} is bounded, and f(xn) —y 0 for every / 6 extB(X*), we are encouraged

to investigate the extreme points of the unit ball of a dual space.

Theorem 9. Let X £ AM be o complete and f £ S(X*). Then f £ extB(X*)
iff f(x)f(y) = 0 for all x,y £X satisfying x A y = 0.

Proof. Sufficiency.  First we show ||/+|| ||/~|| = 0.   In fact, for any e > 0,

by Theorem 5, there exist two orthogonal subspaces E, F of A!" such that
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X = E + F and ||r|£|| < e, ||/+|/-|| < e. Choose x £ S(X) such that
f(x) > II/II-e, and let x = u+v , where u £ E and v £ F. Then f(u)f(v) = 0
since u A v = 0. If f(v) = 0, then

||/||-e</(x) = /+|£(M)-/-|£(w)

<ll/+|£|l + ll/-|£||<ll/+ll+e.
Letting e ̂  0, we find ||/-II = II/II - ll/+ll = 0. Similarly, if f(u) = 0. Then
||/+|| = 0. Hence, without loss of generality, we may assume f = f+ .

Let g,h£ S(X*) satisfy 2/ = g + h . Then 2/ - (g-+ + h+) - (g~ + h~)
and by Lemma 2,

P/ii<ii*+|| + iia+ii + ii*-|| + iia-||
= HSU + ||A|| = 2 = ||2/||.

It follows from Lemma 3 that g+ + h+ — 2/ and g~ = h~ = 0.
Now we show g = h = f, i.e., / £ extB(X*). This follows if we prove

that g(y) = h(y) = 0 whenever f(y) = 0 (by [7, §1.5, Theorem 1], this means
/ = ag = bh, but f, g,h £ S(X*) and 2/ = g + h , so a = b = 1). First we
assume y > 0 ; then from g(y) > 0, h(y) > 0, and g(y) + h(y) — 2f(y) = 0
we have g(y) = h(y) = 0. For the general case, since f(y) = 0 and by the

condition given in the theorem, f(y+)f(y~) — 0, we have f(y+) = f(y~) = 0.
Hence, g(y) = h(y) = 0 follows from the first case.

Necessity. If there exist x, y £ X satisfying x A y = 0 but f(x) > 0 and

f(y) > 0, then we set E = yx , and then by [1] X = E + EL . Let g = f\E
and h = f\E± ■ Then ||g|| > 0, \\h\\ > 0 since x £ E, y £ EL. Therefore,
from

and ||gi| -I- ||/z|| = ||/|| = 1 according to Lemma 2, we see / £ extB(X*).   D

3. Weak convergence and weak compactness in abstract M spaces

We begin with a lemma.

Lemma 10. Let X be a a complete lattice. Then for any xx, ... , xm£ X, X

can be decomposed into m many pairwise orthogonal subspaces. X = Ex-\-h

Em such that (xn - Ax<m(Xj))\En =0, 1 < n < m.

Proof. Since for any x, y, z £ X, (x - z) A(y - z) = x Ay — z, replacing z

by x A y, we obtain

(*) (x-xAy) J. (y-xAy).

Set Ai<„<m(**) = *' and Ex = (Xx - xY. Then by [1], X = Ex + EXL.

Moreover, replacing x, y by xx, l\2<n<m(xn) in (*) respectively, we see

(*i-*')l£,=0,        (A2<„<w(*»)-*')l^=0.

Let E2 = {x £ Ex : x L (x2-x')\E±). Then we also have EXL — E2 + E2(~)EX± .

Again by (*) (replace x, y by x2\E-¡-, A3<n<m(*n) respectively there), we

have

(*2-*')k = 0,        (/\3^m(xn)-x')\E,=0.
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And so on, we find pairwise orthogonal subspaces E\,... ,Em-\,Em = E^_x n

E^_2 of X such that X = Ex + ■ ■■ + Em and (x„ - x')\ En = 0, n < m .   0

Theorem 11. Let X £ AM be a complete. Then x„ -* 0 weakly in X iff {xn}
is bounded and limm_00 || Ai<m(\xn¡\)\\ - 0 for a^ subsequences {xHi} of {xn} .

Proof. Sufficiency. If {xn} does not converge to zero weakly, then by the Rain-

water Theorem there exist some / e ext5(X*), e > 0, and a subsequence of

{x„}, again denoted by {xn}, such that f(x„) > e for all n > 1. Since by

the proof of Theorem 9, /+ = 0 or /~ = 0 and f(x„) = /+(x+) + f~(x~) -
f~(x£)-f+(x~), without loss of generality, we may assume / > 0 and x„ > 0

for all n > 1. Choose m > 1 such that || /\n<m(xn)\\ < e. Then by Lemma

10, X can be decomposed into the direct sum o? pairwise orthogonal subspaces

Ex, ... ,Em such that x„\e„ = x'\ e„ for all n < m, where x' - f\n<m(x„).

By Theorem 9, there exists some n < m such that / = f\ e„ which leads to a

contradiction that

e < f(xn) = f(xn\En) = f(x'\En) < II/II • ||*'|| < e.

Necessity. Suppose that x„ -* 0 weakly in X. If the condition is not

necessary, then there exist a constant e > 0 and a subsequence of {x„}, again

denoted by {xn}, satisfying || Ab<»j(I*"I)II > ^e f°r all w > 1. We first define

y} = xj1" and y\ - xx~. Suppose that {yk : s < 2k, k < m} have already

been defined. Then we set y%+_\ = yf A jc++1 and y^+1 = y™ A x~+x. By
induction, we find {yf} satisfying yfAyf - 0 for all m > 1 and all i, j < 2m

with i ^ j, and moreover, for any k < m, we have either x¿ A yf = 0 or

x¿" A yf = 0 for each s = \ ,2,... ,2m . Hence, if we pick j < 2m such that

zm = yf satisfies ||zm|| = maxj,<2m \\yf \\, then

zm   =

K2""

A    (*»)> 2e.

Next, we select fm £ S(X*) such that fm(zm) = \\zm\\. Since zm > 0 and

X* £ AL, we must have fm > 0. In view of the Alaoglu Theorem [6], {fm} has

a it;*-cluster / e B(X*). It follows that for each fixed n > 1, we can find some

m > n such that \f(x„) - fm(xn)\ < e • Let Fm - zx and Em = F¿¡. Then

X = Em +Fm by [1]. Note that X* £ AL implies ||/m|| = ||/W|£J| + \\fm\Fm\\ \
from the fact

\>\\fm\Em\\>fm(^] = l
\\\zm\\J

-mwe see \\fm\ Fm\\ — 0. Since by the choice of zm , m> n implies that x+ Az„

0 or x~ A zm = 0, we may assume x+ A zm = 0. Thus, x~| Em > zm\ Em , and

so
|/(*«)|>|/m(*«)|-|/(*n)-/m(*n)l

> |/m(x„)|-e = |/m|£m(x„)|-e

> fm\ Em(zm) - e = fm(zm) -e

= ||zm||-e>e,

which contradicts the hypothesis that x„ —> 0 weakly.   G
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Theorem 12. Let X be a dual a complete AM space. Then a bounded subset

A of X is weakly compact iff

sup   lim inf   A      (|x„-x|)
(Xn)CA

= 0

where K — K(xn) is the set of sequentially w*-clusters of {x„} and, as usual,

we denote inf{r : r £ E} = +00 for E = 0.

Proof. Necessity. Let A be a weakly compact subset of X. Then for any

sequence {x„} in A we can pick a subsequence {x„,} of {x„} weakly conver-

gent to some point x in X and then obviously x £ K = K(x„). Therefore, it

follows from Theorem 11

0- lim ||A      (\x„,-x\)
m-*oo II'  >;<m

>  lim    A       (|x„-x|)
m—»00 II'  >«<w

|x„-> lim inf   A
m->ooyeK "' xn<m

y\) >o.

Sufficiency. For any sequence {x„} in A, by the given condition, K =

K(x„) ^ 0, hence, {x„} contains a subsequence, again denoted by {x„} , w*-

convergent to some point x £ K. Hence, for any subsequence {x„,} of this

subsequence, K' = K(x„¡) = {x} implies

lim ||A      (|x„,-x|)   = lim   inf ||/\      (|x„,-y)
1—»oo II'  »;<m m—»oo v£K' II' xi<m

= 0.

By Theorem 11, xn —► x weakly.   D

Remark 1. Replacing X in Theorem 11 or Theorem 12 by L^ or loo, we

obtain criteria of weak convergence and weak compactness for those spaces.
But for X = loo , since u;*-convergence of a bounded sequence in X coincides

with convergence in coordinates, which is also equivalent to weak convergence

in X — Co, we can prove, without any difficulties, the following corollary and

from which one can easily deduce the relative results given in [8].

Corollary 13. A bounded subset A of l^ or c0 is weakly compact iff

sup   lim
(xn)CAm^°°

liminfmin(|x„
k—»00   n<m

xk\ = 0.

Remark2. By [1], if an AM space X has a strong unit e, i.e., x £ B(X) if and

only if |x| < e, then X is order isometric to a C(K) space for an appropriate
compact Hausdorff space K. However, in this paper, the AM spaces are not

assumed to have any units.
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