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Abstract. We prove theorems on the values of the Bernoulli polynomials

B„(x) with n = 2,3,4,..., and the Euler polynomials E„(x) with n =

1,2,3,... for 0 < x < 1 where x is rational. Bn(x) and E„(x) are ex-

pressible in terms of a finite combination of trigonometric functions and the

Hurwitz zeta function £(z, a). The well-known argument-addition formulae

and reflection property of B„(x) and En{x), extend this result to any ratio-

nal argument. We also deduce new relations concerning the finite sums of the

Hurwitz zeta function and sum some classical trigonometric series.

1. Introduction

The Bernoulli and Euler polynomials of degree n , denoted respectively by

B„(x) and E„(x), are defined as [7, p. 25]

(la) Bn(x) = Yj(n\Bsxn-s,        « = 0,1,2,...,

1=0 ^    '

and [7, p. 39]

(lb)        En(x) = Yj(n\Es2-\x-l/2)n-s,        « = 0,1,2,...,

i=0 ^    '

where Bs and Es are the Bernoulli and the Euler numbers given by the coeffi-

cients in the power series

t «21     p
(2a) ¿rn = E54>     w<2n>

1=0

and

1 °°      ts
<2b> Ä7 = *>;[•     KI<«A

1=0
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The term "Bernoulli polynomials" was introduced by J. L. Raabe in 1851,

after Jacob Bernoulli who first studied them (and the "Bernoulli numbers")

before 1705. Bernoulli's results were posthumously published in his main work,

Ars Conjectandi (1713, p. 97). The Euler polynomials and the Euler numbers

(so-named by Scherk in 1825) appear in Euler's famous book, Institutiones

Calculi Differentialis (1755, pp.   487-491 and p. 522).
Standard texts on the classical theory of B„(x) and E„(x) are Chapter II in

Nörlund [9], Chapter VI in Milne-Thomson [8] and Chapters V and VI in Jordan
[6]. The differences in definitions and notations in older literature are discussed

in [6, p. 230 and p. 290]. A detailed bibliography up to 1960 concerning tables
and applications of these polynomials and numbers in summing series, is given

in Fletcher et al. [3, pp. 65-117]. An extensive lists of formulae involving Bn(x)

and En(x) can be found in Erdeley et al. [2, pp. 35-43], Magnus et al. [7, pp.

25-32], Abramowitz and Stegun [1, pp. 803-806], Gradshteyn and Ryzhik [4,
pp. 1076-1080] and Prudnikov et al. [10, Vol. 3, pp. 785-766].

Here we are concerned with the values of the Bernoulli and Euler polynomials

when x is restricted to the set of rational numbers. Symmetry relations, func-

tional equations and differentiation formulae, representation by trigonometric
series and integrals, recurrence formulae and some other properties of these

polynomials are mostly last century results. However, it appears that general

formulae expressing Bn(x) and En(x) at rational arguments in terms of other

functions are unknown, since literature lists only several special values of Bn(x)

and En(x), mostly expressed in terms of the corresponding Bernoulli and Euler

numbers (see Section 4 below). Among them is the following celebrated Euler

relation (1740)

B2n(0) = B2n(l) = B2n = (-l)"-x^ßc(2n)

between the even-indexed Bernoulli numbers B2n and the values of the Rie-

mann zeta function.

We shall prove the theorems on the values of the Bernoulli polynomials

Bn(x) with « = 2,3,4,..., and the Euler polynomials E„(x) with « =
1,2,3,..., for 0 < x < 1 where x is rational. Formulae obtained in this

way express B„(x) and En(x) in terms of a finite combination of trigonometric
functions and the Hurwitz zeta function. Below, we also deduce new relations

concerning the Hurwitz zeta function and sum some classical trigonometric se-
ries.

2. Statement of results

In what follows Ç(z) and Ç(z, a) are respectively the Riemann and the

Hurwitz zeta functions defined by [7, p. 19]

OO        . I OO -.

cw-Ef-ttttEpttf   (Rez>1)
(3a) '-,       . "

= TT2Ï^£(-'>*"'¡S       (R*r>0, zp/1)
fc=l
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and [7, p. 22]
oo .

(3b)        CU,a) = X;7T—^7       (Rez>l, a + 0, -1, -2, ...).

For Rez < 1,   z ^ 1, the functions Ç(z) and Ç(z, a) are defined as the

analytic continuations of the foregoing series. Both are analytic over the whole

complex plane, except at z = 1, where they have a simple pole.
Our main results are as follows.

Theorem A. Let Bn(x) be the Bernoulli polynomial of degree n, let Ç(z, a) be

the Hurwitz zeta function, and let x = p/q (p e Z, q e N with 0 < p < q).
Then:

B2n_x(p/q) = (-ir^^-iE £(2" - l > 5A?) Ms2np/q),

n = 2, 3,4, ... ,

( Bm(plq) = (-I)""1 ^^ E C(2«, s/q)cos(s2np/q),

n = 1,2,3,...,

Theorem B. Let E„(x) be the Euler polynomial of degree n, let Ç(z, a) be the

Hurwitz zeta function, and let x = p/q (p e Z, q e N with 0 < p < q). Then:

(5a) E2n-x(p/q) = (-VnAfin~yI' ¿C(2n, (25- l)/2g)cos((2j- l)np/q),

„   4(2«)!_
+i

1=1

1=1

(5b) E2n(p/q) = (-l)"-^A--^J2a2n+l, (2s-l)/2q)sm((2s-l)np/q),

where « = 1,2,3,....

Note 1. The formulae in (4) can be rewritten as
'«-i

Y^ C(2«, s/q) cos(s2np/q) + C(2«)R    (nln\-(     n«-l   2(2")!
B2n(p/q) - (-1)      ,-,     s2„

(2nq)2

« = 1,2,3,...,

since C(2«, 1) = C(2«), and

B2n-x(p/q) = (-^2nq)2n-\ E^2" ~ 1 » ̂ /q) sin(s2np/q),

n = 2, 3,4,... ,

because one term vanishes. Moreover, it is easy to verify that formulae involved
in Theorems A and B can be rewritten as follows:

2«!     q
Bn(p/q) = -r?_-\„E £(" ' slq} C0S(s2nP/q - nit/2) >

(2nqy s

E„(p/q) = {2^n+l ¿ í(« + 1, (2í - l)/29) sin((25 - l)np/q - nrt/2),
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where p e Z , q e N with 0 < p < q and « = 2,3,4,....

Note 2. It is clear that the Theorems A and B could be rewritten in the rep-

resentation of the polygamma function y/^ , since there exists the following

relationship [1, p. 260, Eq. 6.4.10]

íí/W(z) = (-l)"+1«!C(« + l,z),        « = l,2,3,...,z^0,-l,-2,...,

between y/W and the Hurwitz zeta function.

Note 3. Our proof of these theorems, given in §4, involves a Fourier series for the
Bernoulli and Euler polynomials and conveniently defined functions based on

the Dirichlet power series. The Theorems A and B respectively establish the for-

mulae for the values of the Bernoulli polynomials Bn(x) with « = 2,3,4,...,

and the Euler polynomials En(x) with « = 1,2,3,... for 0 < x < 1 where

x is rational. In this way their values can be expressed as a finite combination

of trigonometric functions and the Hurwitz zeta function. However, by means

of the following argument-addition formulae [1, p. 804, entry 23.1.7]

Bn(x + m) = j^(n\Bs(x)mn-s,    En(x + m) = ¿ (n\ Es(x)mn~s,

1=0 ^     ' 1=0 ^    '

where m is a nonzero integer, this result may be extended to any rational

argument.

3. First results

Let <P(iv, z) denote the Dirichlet power series defined by

(6) *(".*) = £^
n=l

which converges absolutely for all v if \z\ < 1, for Rei^ > 0 if \z\ = 1, z ^ 1,

and for Re v > 1 if z = 1. It is known that Q>(v, z) can be extended to the

whole iv-plane by means of a contour integral. On setting z = exp(/7rx) where

x is real, we consider separately the Dirichlet series derived from (6) when «

is even and odd.

Lemma. Let Fv(x) and Gv(x) be defined by

ti\ rtv\    ^ exp{i2knx}      ^ ,^    ^ exp{i(2k + l)nx}(7) F„(x) = ^ ,    Gv(x)-^-^FTiT-
fe=l v      ' k=0 v '

for any real x and each complex v with Rev > 1, and let Ç(z, a) be defined

by (3b). If x is rational (say, x = p/q with p e Z , q e N), then

1      "
(8a) Fv(p/q) = j¿~- ^ Z(v , s/q) exp{i2snp/q} ,

(8b) G„(p/q) = 7¿wEf(,/'(2í- l)/2q)exp{i(2s- l)np/q).
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Proof. First, note that F„(x) and Gv(x) are "well-defined", since the absolute

convergence of the corresponding series is assured for any real x when Re v >

1. Observe that a shift of index yields

v ,„ /„-,    v^ exp{i2knp/q}     ^ exp{i'2(fc + l)np/q}

W) = £    {2kr     » £ —{2k+-2j—•.

Next, recall that for any a e Z, b e N there exists unique c, d e Z such
that a = be + d and 0 < d < b (division law in Z). Here, this means that

any (k, q)(k e No, q e N) uniquely determine the integers r and s such that
k = qr + s where r = 0, 1,2,... and s = 0, 1,... , q - 1. Hence, it follows
(by absolute convergence) that

Finln\-  1 ^y^exp{,-2(gr + s+l)7rp/g}
FÁPlq) ~ ^ £ £-(qr + s+iy-

r=0 1=0

J_ v^y^ exp{i2(qr + s)np/q}

-2f2-,Z^~       (qr + sV
r=0 j=l

1    v^v^ exp{i2(qr + s)np/q}
\v 2^/1^1(Wtit'o       (r + s/aY

1    ^ »^ exp{i2mp} exp{i2snp/q)
\v 2-12-*/(2aYfxfo (r + s/aY

which can be further simplified to

q     oo

1 ? oo

(2aY fx j^(r + s/qY

since exp{i2rnp} = 1   (r and p are integers).   In view of the definition of

the Hurwitz zeta function in (3b), the proposed formula in (8a) readily follows

from the last double sum.

Starting from

r (nln\     ^exp{i(2k+l)np/q} ,».„/^\^ exp{/2(fc + l)np/q}
g»(pI<i) = E-J2F+-1Y-= ^-inplqï E-(ucTïy-

k=0 v ' A:=0 v '

the formula in (8b) is derived in precisely the same way. This completes the

proof of our lemma.

Corollary. Let S„(x), Cv(x), Tv(x), and Dv(x) be defined by

rQ , j Su(x)\_^    1     f sin(2knx) \
[™> \ Cv(x) } * ¿j (2k)" \ cos(2knx) J '

(    , ¡Tv(x)\_^        1        f sin((2rc-1)ttx)1
iyDj \ Dv(x) ]-2L,t2k-iy\ cos((2rC - l)7tx) J
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for any real x and complex v with Rev > 1, and let Ç(z, a) be defined by

(3b). If x is rational (x = p/q, p e Z, q e N), then

(10b)      íTv{PlQ)\ = _}_Yt(v  (2s-l)/2a)(ún{{2s~l)np/q)\
^1Ubj      \Dv(p/q)}     (2qY^V'K¿S    l)/¿q) \cos((2s - l)np/q) j'

Proof. Observe that the definitions of Sv(x), C„(x), T„(x), and Dv(x) in (9)

ensure the convergence of each of the series involved. Combining (7) and (8)
and equating the real and imaginary parts on both sides of the expressions in

(8) gives the summation formulae in (10).

Note 4. Sv(x) and C„(x) are summable for 0 < x < 2n and Rev > 1

[10, Vol. 1, p 726, entry 5.4.2.2] in terms of the Hurwitz zeta function, while

it appears that such general summation formulae do not exist for Tv(x) and

Du(x) (see[5,§14.2; 10, Vol. 1, §5.4]). For «=1,2, 3, ... thesereis S2n-x(x)
and C2«(x) [10, Vol. 1, p. 726, entries 5.4.2.5 and 5.4.2.7] as well as T2n-x(x)
and D2n(x) [10, Vol. 1, p. 732, entries 5.4.2.3 and 5.4.2.5] are summable in
closed form. The former are expressible in terms of the Bernoulli polynomials

and the latter in terms of the Euler polynomials (see formulae in (13) and

(14) below). It does not seem to have been noticed earlier that the summation

formulae in (10) enable a closed-form evaluation of all series in (9) for rational
arguments.

Examples. For Re v > I, we have

oo     . .      q

(lla) £f = ^£í(í/'s/£?)'     <r«i.2.3,...,
¿fc=i       q 1=1

oo . .      q

(lib)       £(-l)*-iJ- = ¿7£(-irIC(i',*/ff),        q = 2, 4, 6,...,
k=l q   1=1

oo . . q

(llc)     E(2FTTjI7 = (2^EC(^(^-l)/^)'        «7=1,2,3,...,

oo . . q

(lld)    E(-')t-,(2Fri7 = (wD->)s-'«''p^-')/2«)p

«7 = 2,4, 6, ... .

These exaples are the most obvious special cases of the formulae in (10). For

instance, by using (9a) and (10a) and letting p = 0 and ja 1,2,3,... in

C„(x), we obtain (1 la), a well-known property of the Hurwitz zeta function [5,
p. 360, entry 54.13.2]. Similarly, the other sums in (11) can be obtained by a
suitable specialization of the formulae in (10). We believe that they are new,
since it is clear that the sums

oo
1£(-1)*~1¿ = (1-2l~,')í(i')>

k=i
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°° 1

SpFrTr=(1-2""KW-
k=l v ;

1
£(-!)"-' {lk _l)v= 2~lvV,(v, 1/4) - Z(v, 3/4)]

listed respectively as entries 5.1.2.3, 5.1.4.1, and 5.1.4.2 in [10, Vol.   1], are
their special cases.

Further, in view of the definitions of the Riemann zeta function in (3a) and

the last sum, the formulae in (11) can be rewritten as follows

(12a) Yiü(v,slq) = qvC(v),        <? = 1, 2, 3, ...,
i=i

(12b)        Yj(-iy~xi:(v,slq) = qv(l-2x^)li(v),        q = 2,4,6,...,
1=1

(12c)      jrt;(v,(2s-l)l2q) = (2q)v(l-2->')t;(v),       ? = 1, 2, 3,...,
1=1

(12d)

¿(-lr1^, (2s - l)/2q) = (2q)vß(v) = 2~vqv\^(v, 1/4) - Ç(v, 3/4)],

i=i

«3 = 2,4,6, ... ,

where ß in (12d) denotes the series on left-hand side of (1 Id). As was already

mentioned, the relation in (12a) is known, but we believe that the others are
new.

4. Proof of Theorems A and B

Proof of Theorem A. The Bernoulli polynomials B„(x) are represented by the
following the Fourier series [1, p. 805, entry 23.1.17 and 23.1.18]

M,„x R      rrx_,   nw2(2;i- 1)\ ^ sin(2knx)
(13a) B2n-x(x) - (-1)     (27r)2n_!    2L      Iç2n-l

where 0 < x < 1 for« = 2,3,...,0<x<l for«=l, and

, 2(2«)! ^ cos(2knx)
,13b) B2n(x)-(-l)     —5ï^——

K     '     k=l

where 0 < x < 1 for « = 1, 2, 3, ... . By combining (9a), (10a), and (13), we
arrive at the formulae in (4), which completes the proof.

Proof of Theorem B. The Euler polynomials E„(x) of degree « are represented
by the following Fourier series [1, p. 805, entry 23.1.17 and 23.1.18]

(Ha, ^.«.(V^E2!^
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where 0 < x < 1 for «=1,2,3,..., and

4(2«)! ^ sin((2fc + l)7tx)
(14b) E2n(x) = (-!)'

n2"+x f^o    (2k+l)2"+x

(a) B2n(0) = B2n(l) = B2n = (-l)«-i7A_^C(2«) ;

where 0 < x < 1 for«=l,2,3,...,0<x<l for n = 0. By combining
(9b), (10b), and (14), we arrive at the formula in (5), which completes the proof.

In order to relate our results to the already known special values of Bn(x)

and E„(x) we consider the following examples.

Examples. Let Bn be «th Bernoulli number. Then for «■= 1, 2, 3, .... we

have

,„-■2(2«)!

(2n)2

(b)B2n+x(0) = B2n+x(l) = 0,

B2n(l/2) = (l/2)(2x-ln-l)B2n,

B2n(lß) = B2n(2ß) = (l/2)(31-2" - l)B2n,

-»21,(1/6) = B2n(5/6) = (l/2)(21-2n - l)(3l~2» - l)B2n ,

E2n-x(0) = -E2n-x(l) = -(l/n)(22n - l)B2n ,

E2n-x(l/3) = -E2n-x(2/3) = (l/2n)(22n - l)(3x~2" - l)B2n.

Proof. These examples give the known special values of the Bernoulli and Euler
polynomials [10, Vol. 3, pp. 765-766]. Here, we shall prove the above formu-

lae without appealing to the theory of B„(x) and E„(x), and using only our

Theorems A and B and the property of the Hurwitz zeta function given in ( 12a).

(a) This is the Euler relation. We are not aware of a shorter proof (see, for

instance, review in [11]), since it is obviously a special case of the formula in
(4b) and readily follows form it on putting p = 0,t7=l,orp=l,«7 = l.

(b) First, we derive the relations

C(pV, 1/2) = (2"-1).»,

(15) CK1/3) + CK2/3) = (3"-1)C(ï/),
C(v, 1/6) + C(v, 5/6) = (T - l)(3" - l)f(i/)

by making use of the property of the Hurwitz zeta function given in (12a).

All the above formulae for special values can then be derived by applying the
Euler relation and formulae in (15). As an illustration, we calculate the value

of i?2/i(1/6). By making use of (4b) and putting p = 1 and q = 6 for n =
1,2,3,... we have

^2n(l/6) = (-irl2^"2)-22n132n{(l/2)[C(2«,l/6) + C(2«,5/6)]

- (l/2)[f (2fi, 1/3) + £(2«, 2/3)] + [C(2«, 1) - Ç(2«, 1/2)]}

= (-1)""1^2^(1/2)(22n - 2)(32" - min)

d-2n     wax-In     iw   1-.-.-12(2«)!

(2tt

= (l/2)(21-2"-l)(31-2"-l)52«.

= (l/2)(2'-2" - 1)(3'-2" - l)(-l)«-17i-^C(2«)
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Note added in proof

After submitting the manuscript we became aware that our formula (4a) had
been derived in a completely different way by G. Almkvist and A. Meurman,

C. R. Math. Rep. Acad. Canada 13 (1991), 104. Also, a complete bibliography
on Bernoulli and Euler polynomials can be found in K. Dilcher, L. Skula, and

I. Sh. Slavutskii, Bernoulli numbers, 1713/1990, Queen's Papers in Pure and

Appl. Math. 87(1990).
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