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Abstract. The purpose of this paper is to describe these Borel mappings on a

separable complete metric space X which transform every measurable set (with

respect to some measure p. on X) onto a measurable one. It is shown that a

one-to-one Borel mapping / on X fulfills the above property if and only if the

measure p is absolutely continuous with respect to the measure p.f (an image

of p. under the mapping / ). Our results are a generalization of the classical

results of Suslin and Kuratowski.

1. Introduction

In his paper [4], Kuratowski proved the following theorem: Let X be a

separable complete metric space and f a one-to-one Borel mapping on X. Then
for every Borel subset B of X the image f(B) is also a Borel set.

In the case of continuous mappings the above theorem has been already

shown by Suslin in [9].
In the present paper we shall generalize the above theorem of Kuratowski,

considering the measurability (of sets B and f(B)) with respect to some mea-
sure on X instead of their Borel measurability.

Denote by 53 = V$(X) the Borel er-algebra on a separable complete metric
space X and let p be a Borel measure on J. By 53^ we will denote the

completion in measure p of the a -algebra 93.

In this paper we shall consider therefore the question of characterizing of

functions f on X such that f(B) e *B^ if B £ 93A . It will be shown (Example
1) that the condition that / is a one-to-one Borel mapping as in the theorem
of Kuratowski is not enough. Using Lemma 1 we shall then prove that for p

nonatomic and /-onto mappings, the above problem is true iff p <c pf, i.e.,

the measure p is absolute continuous with respect to the measure pf, where

Pf denotes the image of measure p under the mapping /.
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Now we give an example which shows that the extension of the theorem of

Kuratowski is impossible even in the case of measurability with respect to the

Lebesgue measure on R.

Example 1. Let m be the Lebesgue measure defined on the Borel er-algebra 93

of a real line R. Then 93m is the er-algebra of sets which are measurable with

respect to m.
In the first place we show that there exists a one-to-one Borel mapping / from

R into R and there exist Borel sets A and B such that m(B) = 0, m(A) = 1,

and f(B) = A.
Let C be the Cantor set on [0,1]. It is well known that there exists a

continuous mapping g from C onto [0,1] and countable sets Bo c C and

Ao c [0, 1] suchthat g is the one-to-one mapping from C-B0 onto [0, l]-Ao

(see [3]). Therefore, if we put B = C - B0 and A = [0, 1] - A0, then B and
A are Borel sets such that m(B) = 0, m(A) = 1, and g(B) = A. If we now

define a map f : R—> R setting

(g(x)    for x £ B,

x+l    foTX£(R-B)f)[0,+oo),

x for x £ (-oo, 0),

then / is a one-to-one Borel mapping from R onto R such that f(B) = A .

Now we show that for this function / there exists a set E which belongs to

the a-algebra 93m and such that f(E) <£ 93m .
Indeed, since A £ 93 and m(A) = 1, there is a set D c A such that

D i 93m . Let E = f~x(D). Since D c A , it follows that g~x(D) C g~x(A).
But A = g(B) and g is an injection that implies g~x(A) - g~x(g(B)) = B.

Thus E c B. However m(B) - 0, whence we conclude that E £ 93m . But
f(E) = f(f'x(D)) = D. Therefore f(E) $ 93m completes Example 1.

In the above example we used a well-known fact that if A is a Borel subset

of R with positive Lebesgue measure, then there exists a subset B of A which

is nonmeasurable with respect to m (see, e.g., [5]). In this paper we will need

some extension of this fact.

Lemma 1. Let X be a separable complete metric space and 93 = 93(X) the Borel

a-algebra on X. Suppose that p is a o-finite and nonatomic measure on 95.

If A £ 93 and p(A) > 0, then there exists a set B c A such that B £ SB/J.

Proof. It is well known that by our assumptions the measure space (X, 93, p)

is isomorphic (in the sense of measure theory) to the space (R, 93(A), m),

where m is the Lebesgue measure on R [6, Theorem 26.6]. This means that

there exist Borel sets XQ c X and Y0 C R such that /¿(A"o) = 0, m(Y0) = 0
and there is a one-to-one map T from X - X0 onto R-Yo such that T and
T~x are Borel mappings and m is an image of p under T, i.e., for every

Borel set E c R - Yq we have

(1) p(T~x(E)) = m(E).

Let Ax = A n (X - X0). Then Ax £ 93 and p(Ax) > 0. Since T~x is a
Borel map, it follows that T(AX) £ 93(A) and moreover from (1) we have that
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m(T(Ax)) = p(Ax). Thus m(T(Ax)) > 0. Hence there is a set C C T(AX) such
that C £ 93m(.R). Let B = T~X(C). Of course, B c Ax and consequently
BcA.

We shall prove that B is nonmeasurable with respect to p, i.e., B £ 93^ .

Contrary to this, let us suppose that B £ 93„. Then B = Dx \J D2 where

A e 93 and D2 c N for some N e 93 with /¿(TV) = 0. Moreover, we
may obviously assume that N c X - X0 . Therefore T~l(C) = DXUD2 and

consequently T(T~X(C)) = T(DX UD2), i.e., C = T(Dx)uT(D2). But A £ 93
and /V e 93 whence T(A) £ 93(A) and r(JV) 6 <B(R). Moreover, from (1) we
have that m(T(N)) = p(N) = 0. Hence, since T(D2) c T(N), we obtain that

T(D2) £ 93w(i?), and consequently also C £ 93m(jR), which is a contradiction

and completes our proof.

2. Main results

In view of Example 1 we see that the generalization of the theorem of Ku-

ratowski to the case of measurability with respect to some measure need not

always be true.
The main result of this paper gives the conditions under what such general-

ization is possible.

Theorem 1. Let X be a separable complete metric space, 93 the Borel a-algebra

on X, and p a measure on 93. Suppose that f is a one-to-one Borel mapping

from X into X. In order to f(B) £ 93M for every B £<Bft it is sufficient, and
if p is nonatomic and a-finite and f is a surjection, it is also necessary that

p<Pf.
Proof. Sufficiency. Suppose that p « pf and let B £ 93^, i.e., B = A U N
where A£<8,NcAx,Ax£?B, p(Ax) = 0. We have that

(2) f(B) = f(A)öf(N).
Since A £ 93, it follows that f(A) £ 93 and consequently f(A) £ 93^ .
Now we show that also f(N) e 93M . Indeed, from Ax £ 93 it follows that

f(Ax) £ 93. Moreover, since / is an injection, we have that f~x(f(Ax)) = Ax,

whence pf(f(Ax)) = p(f~l(f(Ax))) = p(Ax). But p(Ax) = 0. Therefore
Pf(f(Ax)) = 0. Thus in view of the assumption (i.e., p <c pf) we receive that

p(f(Ax)) = 0. But NcAx implies that f(N) c f(Ax). Hence f(N) £ 93^ .
We proved therefore that f(A) £ 93^ and f(N) £ 93^ , which by virtue of

(2) implies that f(B) £ 93^, and ends the proof of sufficiency.

Necessity. Suppose that our assertion is not true. This means that there

exists a set Bx £ 93 such that p/(Bx) = 0 and p(Bx) > 0. From Lemma 1

we receive that there is a set Ax c Bx such that Ax £ 93^ . Let B = f~l(Ax).

Since Ax c Bx, it follows that f~x(Ax) c f~x(Bx), i.e., B c f~x(Bx). But

f~x(Bx) £ 93 and p(f~x(Bx)) = pf(Bx) = 0, which implies that B £ 93^.

On the other hand, we have, however, that f(B) — f(f~x(Ax)) = Ax (since

f(X) = X). But A\ i 93M, whence f(B) i 93„. Therefore we have found
a set B £ 93¿¿ such that f(B) ^ 93^, which contradicts the assumption and

consequently completes the proof of necessity in Theorem 1.

As an illustration of our results we consider now the case of translations in a
linear space. It appears also that for such simple mappings, the generalization

of the theorem of Kuratowski that we treat need not be true (Example 2). Then
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from Theorem 1 we shall receive a characterization of these translations on the
linear metric space X with measure p for which such a generalization is true

(Theorem 2).
Thus let X be a real separable complete linear metric space. For x £ X

denote by Tx the translation by x , i.e., Tx(y) - y + x for y £ X. Of course,

for every x £ X Tx is a one-to-one Borel mapping on X. Therefore for each

such translation the theorem of Kuratowski holds true, which means that the

Borel er-algebra 93 = 93(X) is invariant under all translations, i.e., B + x £ 9}

for any x £ X and B e 93 .
Now let a be a Borel measure on I. In some cases the generalization of

the theorem of Kuratowski is then true, which also means that the rr-algebra

93^ is invariant under all translations; for example, if X = Rn and p is the

Lebesgue measure on Rn (see, e.g., [6]). But the situation may change if X is

an infinitely-dimensional linear space.

Example 2. Let v be a Gaussian probability measure on R, and let p — vx.vx

■be the product measure defined on the linear metric space R°° - RxRx-- .
We will show that the /¿-completion of the Borel a -algebra 93 = 93 (R°°) is not

invariant under translations.

Let us remark that there exists a set Y c R°° which is not tí-measurable,

i.e., Y i 93„ [7, p. 92].

Now let A - {x — (xn) £ R°° : ¿~^x2/n2 < oo}. Then A is a Borel subset

of R°° and p(A) = 1 (see [7, p. 54]). It is easy to see that if we define an
element y = (y„) £ R°° putting y„ = n (« = 1,2,...), then A n (A +y) - 0 .
Therefore, since p(A) = 1 and p is a probability measure, the set A + y is

//-measurable and p(A + y) - 0. Now we put C = A n Y . Let us remark that

C £ 93^ . Indeed, since p(A) = 1, it follows that Y - A £ 93,,. If we now
suppose that C £<Sfl, then from Y = C U (Y - A) we obtain that Y £ 93„ .
But Y is not a tí-measurable set. Therefore C $ 93^.

Now we define a set B putting B = C + y . Since C c A, it follows that
C + y c A + y, i.e., B c A + y. But A + y £ 93^ and p(A + y) = 0.
Hence B £ 93A . But on the other hand B - y = C and C £ 93^ . Therefore
B - y d¿ fßM . Thus the cr-algebra 93^ of //-measurable sets is not invariant

under translations.

If tí is a measure on a linear space X and Tx (x £ X) is a translation on
X, we shall denote for simplicity the measure prx by px . An element x £ X

for which p < px is called an admissible translation of the measure p. Denote
by AS(p) the set of all admissible translations of p, i.e., AS(p) = {x £ X :

p<& Px) • From Theorem 1 we thus obtain the following theorem:

Theorem 2. Let p be a a-finite and nonatomic measure defined on the Borel
a-algebra 93 of a separable complete linear metric space X, and let x £ X.

B + x e 93^ for every set B £tB/J if and only if x £ AS(p).

The set of admissible translations for various measures p has been studied
by a lot of authors. The detailed structure of AS(p) for specific p was given

in [1, 2, 8, 10].
At the end of this paper we give some remarks about the possibility of further

generalization of the theorem of Kuratowski that we considered. Namely, it is

easy to prove that Theorem 1 holds true also for /¿-measurable mappings on a
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separable complete metric space X, i.e., measurable with respect to (93^, 93).

Moreover, in the similar way as in Theorem 1, it is simple to show that if p is

rj-finite and nonatomic, then for every /¿-measurable mapping / from X into

X  f~x(B) £ <B„ for every B £ 93„ ifF pf < p.
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