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NONNEGATIVE SOLUTIONS OF THE RADIAL LAPLACIAN
WITH NONLINEARITY THAT CHANGES SIGN

N. P. CAC, A. M. FINK, AND J. A. GATICA

(Communicated by Hal L. Smith)

Abstract. We find a solution to the radial Laplacian equation y" + ^f^-y' +

ka(x)f{y) = 0 , y'(0) = y(l) = 0 when a may change sign and is "sufficiently

positive". The function / is qualitatively like ey , and we conclude solutions

for 0 < X < Ao .

1. Introduction

A variety of papers have looked at boundary value problems of the form

(1) Ly = Xa(x)f(y),

(2) y(0)=y(l) = 0,

or

(2') y'(0)=y(l) = 0

in which / > 0 and a > 0, and L is some differential operator. We have

discussed this problem in [1], [2], [3], and [4] as well as other papers cited

there. In each case we have endeavored to show the existence of solutions by

constructive means, that is, have some sort of iteration converge. If /(0) = 0

it is especially difficult to get a numerical procedure to converge to a positive
solution. In this paper, we continue this study in which we allow, for the first

time, the coefficient function a to change sign.

To be specific we study the problem (1) and (2') where Ly = -\y" + ^f*-y']
for N > 2. Obvious modifications in our arguments would also suffice for the

problem (1) and (2) with Ly = —y" .
We are considering finding a positive solution (y > 0 in [0, 1)) of

(3) y» + HzAy> + Xa(x)f(y) = 0

with

(4)_ y'(0) = y(l) = 0
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where A is a positive parameter;

(5) a(t) = a+(t) - a-(t)   with a±(t) > 0 and a e L.(0, 1);

and

(6) / is continuous, positive, and nondecreasing on [0, oo).

It is well known that the Green's function G(x, t) for (3) and (4) is non-

negative when we write it as

(xN-ly')' + lKN-1a(x)y(x) = 0.

Moreover it is easy to see that a solution to (3) and (4) is a fixed point of the

operator

(7) F<D(x) = X f G(x, t)tN-xa(t)f(Q>(t)) dt
Jo

whose domain will be C+(0, 1 ), the cone of continuous non-negative functions.

The operator T does not leave this cone invariant since we allow a(x) to change

sign.
In order to set up a convergent iteration we will use the following proposition.

Proposition. Assume (5) and (6). Let A = {x\a(x) > 0} and B = {x\a(x) <
0} . Suppose we have bounded measurable functions fo, Wo on [0, 1] suchthat

they satisfy

(i) 0 <(f) < w   on A,        0 < y/ < <f>   on B;

(ii) Ty/<w   on A,        Ty/<(f>   onB;

and

(iii) T(j)>(j)   on A,        T<p>\p   on B.

Define

r , ,, s      Í T(f>o(x)    on A, f Ty/o(x)   on A,

(1V) MX) = \TW0(X)   onB;        ^W = { 7>0(*)    on B.

Then 4n and \px also satisfy (i), (ii), and (iii).

Proof. We note that the operator T can be written as

(8)

T<p(x) = X [ G(x, t)tN-xa+(t)f((p(t))dt
Ja

-X [ G(x,t)tN-xa-(t)f(cp(t))dt.
Jb

For convenience we write

(9) T<f>(x) = Tx<p(x) - T2tp(x)

where T¡(p, i = 1, 2, are both monotone in the sense that <j> < w implies
T¡(p< T¡ip. Tx acts on C+([0, l]n^) and T2 on C+([0, l]nß). Note that
(i) implies that

(10) 7>o = Tx(po - T24>o <TxWo- T2Wo = Two-
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This immediately implies that 4>i and y/x satisfy (i). The condition (ii) for y/x

is that on A, Ty/x < Wi = Two and on B, Tyix <<f>x = Two • i.e., Txpx < Ty/o ■
But using (ii) and (iii)

(11) Ty/x = Tx(Tipo) - T2(Té0) < Tx(wo) - T2(y/0) = 7>0.

Similarly condition (iii) for éx is that T<f>x > <pi = T<po on A and Tex >

y/x = Tyio on B. Now

(12) T<px = Tx(T<h) - T2(Tyy0) > Tx(é0) ~ Wo) = Té0

gives (iii) for <p\.

Theorem 1. Assume (5) and (6), and suppose there are functions éo, Wo that

satisfy (i), (ii), and (iii). Then the problem (3)-(4) has a solution.

Proof. We define

,,,» , Í T(j)n    on A, f Ty/n   on A,
(13) (pn+x = < Wn+l = W, D

I, TWn   on B ; \ Tcpn    on B.

By the proposition and induction, (</>„ , y/„) satisfies (i), (ii), and (iii) and hence

(10), (11), and (12), i.e.,

Q<T<pn< T<f)n+l < Ty/n+i < Ty/n < Ty/0.

Thus T<pn î 4> and Ty/„ [ y/ pointwise and <f> <w ■ Since

T<pn+x = Tx(T(j)n) - T2(Ty/n),

we may apply Lebesgue's dominated convergence theorem to have

(14) ^=F,(0)-F2(F)

so that <f> is continuous on [0, 1]. Similarly y/ is continuous on [0, 1], and

(15) yf=Tx(w)-TS).

From (13) we have </>„+■ —» 4> on A by definition of 0. On the other hand

</>„+■ = T(pn on A, so (¡)n+x -* TJ>. Thus <\> = Ttf> on A. Ón B we have

y/„+x = T(j>„ —* (p by definition of tj>. But <f>„+x = Ty/n on F, so <f>„+x —>y7 on
B . Thus on B , Ty7 = <h. In a similar way we have

-     f Té    on A,        _     ( Ty7   on A,
é= <  ^_ „ <,/

7^1//   on B ; t T0    on B,

and 0 and y/ are fixed points of T2.

Now consider the convex region in C[0, 1] defined by C = {g(x)\é(x) <

g(x) < w(x), x e [0, 1]} . This is invariant under T for

Tg = Tx(g) - T2(g) < Tx(w) - T2(4) = W

by (15). Similarly

Tg = Tx(g) - T2(g) > 7,(0) - 72(F) = 0-

Now G(x, t)tN~x is continuous on [0, 1] x [0, 1], so a e L>(0, 1) implies

that {(Tg)\g e C} is uniformly equicontinuous, so T restricted to C is a

compact operator. By Schauder's fixed point theorem T has a fixed point.
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Comment. The order interval {g(x)\Té0 < g < Ty/o) already is invariant
and one could use Schauder's theorem directly. But the iteration improves the

estimates. In general one might expect the two functions é and y7 to be the
same. So one could in effect construct the solution numerically.

Observation. If / > 0 and nonincreasing, then one takes (i) and the following

modified versions:

(ii)' Té <yi   on A,        Té < é   on B;

(hi)' Tyi > é   on A,        Ty/ > y/   on B;

and

f Ty/o   on A, \ Té0   on A,
iv fa = \ „,        D        wi = i ~ D

( Té0    on B; [ Ty/0   on B.

One can prove the theorem of existence where now Té > Tw, Té I, and

Tw Î • The details are the same.

3. An example

To construct an example where the previous analysis applies, we will make

the following assumption.
(H): There is an e > 0 so that

(16) [ xN~xa+(x)dx>(l+e) f xN'xa-(x)dx   for all t e [0, 1].
Jo Jo

Comment.  H means a is sufficiently positive near 0.

We seek éo and Wo so that (i), (ii), and (iii) are satisfied. Let <f>o(x) = a on
B and é0(x) = 0 on A with ^o(^) = a on A and Wo(x) = 0 on B. Then
(i) is satisfied if a > 0. Now the condition (ii) is

Ty/o = Tx(a)-T2(0)<a   on [0,1]

while (iii) is
r</.0 = r1(0)-r2(a)>o on[0, l].

Letting z±(x) = /0 G(x, t)tN~xa±(t)dt these conditions become

(17) X[z+(x)f(a)-z-(x)f(0)]<a

and

(18) X[z+(x)f(0)-z-(x)f(a)]>0.

We consider (18) first. Define z(x) = z+(x) - (1 +e)z-(x). Then z is a

solution of

z" + ^AaIz + (a+ - (1 + e)a-) = 0,        z'(0) = z(l) = 0.

It follows that

(z'xN-x)' = -xN~x(a+(x) - (1 + s)a-(x))

and

z'(t)tN~x = - f xN-x(a+(x) - (1 + e)a-(x)]dx <0
Jo
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by (H). Thus  z  is decreasing and therefore is non-negative, i.e.,   z+(x) >

(l+e)z-(x) on [0, 1]. So (18) is satisfied if

(19) /(a)<(l+e)/(0).

We select such an a and argue that (17) can now be satisfied for small X.

To prove this we will give an explicit estimate. Now as above

z+(x)-z-(x)=      G(x,t)tN~xa(t)dt
Jo

and the right-hand side is a decreasing function, so

z+(x)<z-(x)+ f G(0,t)tN~xa(t)dt.
Jo

This last integral is

-^2 / t(l-tN-2)a(t)dt = ß        If lnta(t)dt = ßifN = 2)

Hence

f(a)z+(x) - f(0)z-(x) < [/(a) - f(0)]z-(x) + f(a)ß

<[f(a)-f(0)]z-(0) + f(a)ß

since z- is decreasing (as above for z).

This in turn is dominated by (see (19))

e/(0)z_(0) + (l+e)/(0)p\

So (17) is satisfied if

(20) X - f(0)[ez-(0) + (l+e)ß]

the denominator is explicitly (N > 3)

/(0)
/■■ (t-tN-x) fx (t-tN-x)

Jo     N-2 }a-(*)dt+ (!+*)]       J ,
o

= /(0)
fx(t-tN-x

Jo     N-2
a(t)dt + ej ^-^

N-2

,¿v-i)

T

Theorem. If f(0) > 0, f is non-decreasing, and a is measurable and in

Lx(0, 1) such that (H) is satisfied, then problem (l)-(2') has a solution for
0 < A < A0 where (N > 3)

X0 =
(N-2)a

f(0)J¿(t-t»-x)a(t)dt + ef0l(t-t»-x)a+(t)dt

if f(a) < f(0)(l + e). For N = 2,

—a
Xo =

f(0) J0l t In ta(t) dt + e /J t In ta+(t) dt '



1398 N. P. CAC, A. M. FINK, AND J. A. GATICA

For specific examples, one can take f(a) = /(0)(1 + e). For example, if

/(y) = ey , a = ln(l + e), and /(y) = 1 + yp , then a = ex/p . For an example

of (H) take

a(t)ÀA>      ?*'<*'
\-B,    \<t<l,

where 0 < B(2N - 1) < A. One can easily verify that 1 + e = B(2i_x) will

work for (H). In fact if a(t) is decreasing on [0, 1] with a(xo) = 0, then

JQ'xN~xa+(x)dt > 0 on [0,x0] and equal to JQX°xN~xa+(x)dx on [x0, 1].

Since j¡jxN-xa-(x)dx = 0 on [0, x0], (H) is satisfied if j*° xN~xa+(x)dx >

(1+e) J0'xN~xa-(x)dx on [xo, 1]. Since the right-hand side is increasing, the

condition is

<j0V^±(^
f0lxN~xa-(x)dx

We have given a sufficient condition for small eigenvalues of the problem

(l)-(2') which involve a+ being sufficiently positive, i.e., the condition (H).

Some such hypothesis is necessary, but we believe that X small is a correct

condition.
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