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Abstract. It has been long conjectured that the two spherical caps are then only

discs in the Euclidean three-space B3 with non-zero constant mean curvature

spanning a round circle. In this work, we prove that it is true when the area of

such a disc is less than or equal to that of the big spherical cap.

1. Introduction and statement of results

We shall consider the problem of classifying all the compact surfaces in the

Euclidean space R3 with non-zero constant mean curvature H spanning a

radius one circle. Heinz [H] found that a necessary condition for existence

in this situation is \H\ < 1. So, we shall suppose 0 < \H\ < 1. The only
known examples are the following: the spherical caps with radius 1/\H\ (two
non-congruent if \H\ < 1 with areas A+, A- respectively) which are the only

umbilical ones and some (non-embedded) surfaces of genus bigger than two

whose existence was shown by Kapouleas in [K]. This lack of examples and

the analogy with the boundaryless case provides evidence supporting the two

following conjectures:

Conjecture 1. An immersed disc with non-zero constant mean curvature spanning

a circle must be a spherical cap.

Conjecture 2. An embedded compact surface with non-zero constant mean cur-

vature spanning a circle must be a spherical cap.

Of course, these are the boundary case versions of the celebrated theorems by

Hopf and Alexandrov respectively. Partial answers to the second question can
be seen in [E-B-M-R] and [B-E]. In this paper we solve affirmatively Conjecture

1 provided that the area of our immersed disc is less than or equal to the area

of the big spherical cap spanning the given circle. In fact, we prove

Theorem. Let 4>: D —> R3 be an immersion of the two-dimensional disc in the

Euclidean space with constant mean curvature H, 0 < \H\ < 1, such that <f>(dD)
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is a radius one circle. Then the area A of <p(D) satisfies

A>A- = ~(l-s/l-H2)

where A- is the area of the small spherical cap of radius jm spanning <j>(d(D)).

Moreover, the equality holds if and only if <f> is umbilical and so tf>(D) is this

small spherical cap.

By combining this theorem and an isoperimetric inequality due to Barbosa

and Do Carmo ([B-C]) we obtain

Corollary. If the area of an immersed disc in R3 with constant mean curvature

0 < \H\ < 1 spanning a radius one circle satisfies

A<A+ = ~(1 + Vl-H2),

then the immersion is umbilical and its image is either the big or the small

spherical cap.

2. Proof

Consider an immersion <p : D —» R3 from the two-dimensional disc into the

Euclidean space having non-zero constant mean curvature H and such that

<j>(dD) = {peR3;\p\2=l,(p,a) = 0}

for a certain unit vector a e R3, that is, <p(dD) is a radius one circle (so
\H\ < 1 by the Heinz result). By endowing D with the Riemannian metric

ds2 induced by </> from the Euclidean one of R3 we get a compact simply

connected Riemannian surface. The following isoperimetric inequality due to

Barbosa and Do Carmo is valid (see [B-C] and [B-Z]):

L2 - 2A Í2n - f (K- k)+dA\ +kA2>0

where A is the area of D, L the length of dD, K the Gaussian curvature

function, dA the canonical measure associated to the metric ds2, and k an

arbitrary real number.

In our case we know that K < H2 with equality holding only at the umbilical

points and, on the other hand, L = 2n because <l>(dD) is a radius one circle

of R3. So, taking k = H2 in the inequality above

0 < H2A2 - 4nA + 4n2,

that is, either

A < A- = |^(1 - ^/Ï^H~2)

or
2k

A>A+ = m(l + Vl-H2).

If some of these two inequalities become an equality, then we have K = H2

and so our immersion would be umbilical.

Now we need to use a certain flux formula which appears in [K-K-S] given

for the embedded case, but that is true also for the immersed case. For com-

pleteness, we shall give a proof of this formula.
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Lemma. Let M be a compact surface with boundary dM and <p: M —> R3 be

an immersion with constant mean curvature H. We denote by a: dM —> R3

the restriction of <p and by N: M —> R3 the Gauss map of 4>. Then

H        a A a' = - [    N A a'.
JdM JdMIdM JdM

Proof. We define an R3-valued one form co on the surface M by

cop(v) = (H<t> + N)p A (d<p)p(v),       peM, ve TPM.

As H is a constant, one easily sees that dco = 0, that is, co is closed. From

Stokes's theorem, we have

/   co = 0,
JdM

that is,

(Ha + N) A a' = 0.    D
hiIdM

Now, we can continue with the proof of the theorem. We shall denote by kg

the geodesic curvature of dD in (D, ds2). Since <p(dD) is a circle of radius

one, k2 = I - k2, where k„ is the normal curvature of cp(D) in the direction

of a'(s). We choose the parametrization of <f>(dD) to get a A a! = a, where
a = (0,0, 1). Then

kn= -(N',a') = (N,a")

= ~(N,a) = (a' AN,a).

The lemma gives us

kn = 2nH.
JdiIdD

So, by using the Cauchy-Schwarz inequality,

<4?t2

Then we get

H2 < 2n [   k2 = 4n2 - 2% [   k\
JdD JdD

OW-
JÍkg\ <2ttVi -H2.

3D

From the last inequality and using the Gauss-Bonnet theorem, we obtain

2n =  [ K+ [   kg< AH2 + [   kg
JD JdD JdD

<AH2 + 2nyJl-H2,

and the proof is finished

With respect to the proof of the corollary, we only remark that if A < A+ ,

then, from the theorem and the previous isoperimetric inequality, we get A =

A- or A = A+ , i.e., 4> is umbilical and its image is a (small or big respectively)

spherical cap.
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