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ABSTRACT. Let f(z, y) be analytically irreducible at 0 and f(0) = 0. Then
the plane curve singularity defined by f has the same topological type as the
curve defined by f,, for some k > 0 where f; = z8 +yb, f = fi"1 +
ymuzmz o fy = fHmn 4 fityMazmn . are defined by induction on &
with distinct numerical conditions topologically invariant. Moreover, we give an
easy alternate proof of Zariski’s topological classification theorem of irreducible
plane curve singularities.

0. INTRODUCTION

Let C{y, z} or &, be the ring of convergent power series at (y, z) = (0, 0).
Suppose that f is irreducible in &, with f(0) = 0. Now consider the plane
curve singularity defined by f. In decreasing order in the degree of z, f can
be written as follows: f = apz" + a\y*z"~ ' +--- + a,y* where ay, a, are
units in @, and for 1 < i < n—1 each a; is a unit in &, if it exists,
and the o; are positive integers. Then by Theorem 2.2 we easily prove that
if f is irreducible in &, % < % forall i. Also, if (n, a,) = 1, we show
that the above inequality becomes sufficient for the irreducibility of f in & .
Moreover, even if (n, a,) > 1, the necessary condition may be said to be
sufficient in an inductive sense in terms of blow-ups. Using this fact we can
classify topologically irreducible plane curve singularities in terms of Weierstrass
polynomials (Theorem 4.2). Finally, in a very elementary way we are going
to prove Zariski’s topological classification theorem of irreducible plane curve
singularities in terms of parametrization (Theorem 4.4).

1. KNOWN PRELIMINARIES

Let V = {(y, z): f(y, z) = 0} be an analytic subvariety of a polydisc in
C2 with (0,0) eV, and (0, 0) a singular point where f is holomorphic near
(0, 0) and square-free. Let m: M — C? be a blow-up of C* at (0, 0). Let
(v, v) and (', v') be coordinate patches for M with n(u,v) = (y, z) =
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(uv,v) and n(uw',v') = (¥, z) = (v', w'v'). Let e be the multiplicity of f
at (0,0); e > 2. Then n~!(V), the total transform of V', is given locally
by f(uv,v) =vefi(u,v) and f(v', w'v') = v fo(u', v'). Then we call V()
the proper transform of ¥ at (0, 0). Note that if f is irreducible in &, then
just one coordinate patch is needed for the study of V(1. After m iterations
of blow-ups, let t,, = tomyo---omy: M™ — C2. Let V(™ be the proper
transform of V' under 7,,. Let E/™ = 1,1(0, 0). Then E™ is, by definition,
an exceptional set of the first kind. Let E(™ = (JE;, 1 < i < m, be the
decomposition of E(™ into irreducible components. Each E; is called an
exceptional curve of the first kind. Let (fot,) =V +Y eE;, 1<i<m,
be the divisor of f o1, . Then we have the following well-known theorem.

Theorem 1.1. Let V = {(y, z): f(y, z) = 0} be an analytic subvariety of a
polydisc in C* with (0,0) € V and (0, 0) only a singular point where f is
in @ and square-free. There exists an analytic manifold M by finitely many
(m) blow-ups, tm: M — C%, such that if R is the set of regular points on V
then tp: ' (R) — V is a resolution of the singular point (0, 0) of V, where
T (R) is the closure of t,;'(R) in M.

Corollary 1.2. Under the same assumption of Theorem 1.1, after additional
blow-ups any two components of V™ and JE;, 1 < i < m, meet with normal
crossings whenever they meet and no three distinct components of V™) and \J E;
meet, where V™ and \J E; are defined just before Theorem 1.1.

Definition 1.3. Let V = {f(y, z) = 0} and W = {g(y, z) = 0} be analytic
subvarieties of a polydisc in C?> with (0,0) € ¥V and (0,0) € W, where
V and W have the only singular point at the origin, and f, g are in &,
and square-free. ¥ and W are said to have a homeomorphic resolution (or
topological or equisingular) if, using the composition of the same number of
successive blow-ups 7,: M — C?, (fo1,) and (go 1,) are equivalent as
divisors in the sense of Corollary 1.2. Then denote this relation by f ~ g.

2. A CRITERION OF IRREDUCIBILITY OF PLANE CURVES

Lemma 2.1 (Hensel’s Lemma). Let f(y, z) = apz" + ajy®z" 1 + .- + g,y
be irreducible in @y, where each a; is a unit in &, if it exists, and the a; are
positive integers. Let m be the multiplicity of f at 0. Then m=n or a,. If
n=a;+n—1i forsome i,then n=a;+n—-1i forall i=1,...,n, and so
f can be written in a power series as follows: f = f,(y, z) + terms of degree
> n, where f, is a homogeneous polynomial of degree n with f, = (ay + bz)"
for some a,beC.

Theorem 2.2. Let f(y, z) = apz" + a;y*z" ! + .- + a,y> be irreducible in
Oy, where each a; is a unit in @, if it exists, and the «a; are positive integers.
Then % < % forall i. Moreover, if o, = nk for some integer k , then =&
forall i=1,...,n—1.

Proof. We are going to prove the above assertion by induction on the mul-
tiplicity of f. Without loss of generality we may assume that a, < n for
the following reason: If kn < a, < (k + 1)n for some positive integer k,
then use k£ blow-ups and Lemma 2.1 because blow-ups preserve irreducibility
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of fin & and % < % in f if and only if 2=k2 < @kl in f = where
fv, uvk) = v*"fi and fi = av" + - + aqus K=l 4. 4 guuenhn | If
n = ap, then by Lemma 2.1 n =a;+n—i forall i,andso 2 =% =1.
Let n > a,. Then there is a positive integer r such that 0 < n —ra, < a,.
Repeat r blow-ups at (y, z) = (0, 0). Then the local defining equation for
the rth total transform may be given by f(y, z) = f(u v}, v1) = v{" f;, where
fr=agu] T+t aufo[* T 4 4 guul . Note that n—ra, >0 and
raj+n—i—ra, >0 by Lemma 2.1. If n-ra, = a,, then by Lemma 2.1
ai+raj+n—i—ra, > n—r forall i,ie., a;(r+1)>i. Thus % > -1 = 2 for
all i. Let n—ra, < a,. Then we may assume that ra;+n—i—ro, < n-ra,.
If ra;+n—i-ra, >n-ra, for somei, then n—ra, > 0 implies also that
@cl<a Alsoif raj+n—i—ray =raj+n—j—ra, for i < j, then
aj > a;. Sorewriting f, in decreasing order of v, by the induction assumption
we get
Qp < Q; ' < aj . )
n—ra, ~ n—ra,—(raj+n—i—ray) ~ n—ra,—(roj+n—j—roy,)

Thus & < &% < %4
n =i =]

Corollary 2.3. Assume that the hypotheses of Theorem 2.2 are satisfied. If
(n, an) =1, then f is irreducible in @y if and only if % < % forall i # n.
Moreover, in this case f ~ z" + y* in O,.
Proof. Let (n, an) = 1. If f isirreducible in &, then = < % by Theorem
2.2. To prove the converse, it suffices to follow the same induction argument as
we have seen in the proof of Theorem 2.2.

3. A CHARACTERIZATION OF IRREDUCIBLE PLANE CURVES

Let f(y, z) = apz" + a1y* z"~! + ... + a,y* be irreducible in &, where
each a; is a unit in @& if it exists. By the Weierstrass Preparation Theorem
and a nonsingular linear change of coordinate f can be rewritten as follows:

[=AW" + oy w2+ ™),

where A isaunitin C{y, w} and the ¢;(y) are unitsin C{y, w} if they exist,
and the y; are positive integers. Then we need to find the relationship between
a, and y,. Note that c; is a zero.
Lemma 3.1. Under the above assumption, there are two cases.

(i) If an = nk for some integer k, then y, > a, and (y,, n) <n.

(1) If (an, n) <n, then a, =7y,.
Proof. The proof just follows from Lemma 2.1 or Theorem 2.2.

Lemma 3.2. Let a and b be positive integers with (a, b) = 1. Then for any
integer n > ab — a — b there exist nonnegative integers x and y such that
n=ax+by. If n>ab then x and y can be chosen both positive.

Proof. See [4].

Let f = z"+ayy®z"24+...4a,y* be irreducible in &, with multiplicity 7,
where the a;(y) are units for 2 < i < n in & if they exist. Note that a; =0.
If (n, ay) =1, by Corollary 2.3 f is irreducible if and only if € < 2 for all




1366 CHUNGHYUK KANG

i#n,and so f ~ z" +y* near (0, 0). Now assume that d = (n, a,) > 1.
By Lemma 3.1, d < n. Set n = nid and a, = k;d. Now consider f as a
convergent POWer series . Cop y*zF . Look at each monomial in f and rewrite
f in increasing order of n;a + k8 as follows:

f=o+ 2 +2+
where 3, = 3, capy®z? and each monomial of Y, satisfies njo + ki =
nikid + m; foreach i > 0 and 0 = mg < m; < my < ---. After a finite

number % of blow-ups until the total order of the new exceptional curve E;, =
{r = 0} becomes nk;d in one of the local coordinates (s, r), the local defining
equation f; for the Ath proper transform of the curve defined by f is given
topologically as follows:

N=6+DT+are(s+ )42+ 4 cur¥,

where each ¢; isaunitin C{s+1, r} if it exists, and the e; are positive integers.
Note that Ej, is the first exceptional curve which has three distinct intersection
points with two other exceptional curves and the proper transform. If (d, e;) =
1,then f isirreduciblein C{s+1, r} ifand onlyif & > % forall i # 4, and
so fi ~ (s+1)4 +r% . Therefore, reversing blow-ups, we get by Lemma 3.2 that
f~(zM4yk)d 4 ypz9 in &, where (n, k;) =1, and pn,+qgk, = njkid +e,
with (pn; + gk, ,d) = 1. Observe that ¢ may be chosen with g < n;d since
n = nyd is the multiplicity of f. If g = (z™ +yk1)4 +yP1 241 | then we can show
that g ~ f in &, if and only if pn; + q1k; = pny + gk, . Let (d,ez) > 1.
Note that (d, e;) may be equal to e; < d. Put d = n,d, and e; = kyd, with
d,=(d,e;). Write f; againin C{s+ 1, r}. Then f; has the form

f=YptXntXnt -,

where 3, = S bap(s + 1)°r# and each term of Y, satisfies ak, + Bn,; =
nykyd; + 1; foreach i > 0 and 0 = [y < I/, < I, < ---. Then repeat those
arguments just as above inductively. Thus the necessary condition of Theorem
2.2 for f to be irreducible in & is sufficient in an inductive sense, as we have
seen in the above discussion.

4. A TOPOLOGICAL CLASSIFICATION
OF IRREDUCIBLE PLANE CURVE SINGULARITIES
IN TERMS OF WEIERSTRASS POLYNOMIALS

Definition 4.1. Let
fl — 74 +yb’ f2 — flnzl +ymnzm|z , f3 — f;’SI + flnzzymzn zM2 Y

and

ﬁc+l =f:k+|.| +f:i'lzf:i_zl'}”'f]nz'kymk‘lzmk‘z

be Weierstrass polynomials in z, where 2<a<b, n; >2 fori=2,...,k+
1, and the multiplicity of f; is anyn3 ---nj for j=2,..., k+1 at0. Define
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the new notations inductively as follows:
fati, ) = aty + by,
[3(x2s by, 2) = xof2(myy, miz) + o fr(ty, ta),
fa(x35 %2, 81, 12) = x3f3(n22s My, may) + n3 f3(xa2s th, 1),

fk+l(xk; Xi—13 -2+ 5 X2, tl 5 t2)
=Xk S1 (M=t 25 B2, 35« v s M2 k1> Mi—y 1> Mk—12)
+nk,lfk(xk—l;xk—27 s X2, 1, t2)

Here f; € the type [j] for each integer j > 1 means that in a resolution of
the isolated singular point (0, 0) of the curve defined by f; there are exactly j
exceptional curves each of which has three distinct intersection points with three
distinct components among other exceptional curves and the proper transform
with normal crossings in the sense of Corollary 1.2.

Theorem 4.2. With Definition 4.1 we have the following properties:

(A) (i) fi € the type [1] is irreducible in @, if and only only if 2<a < b
and (a,b)=1.

(ii) f € the type [2] is irreducible in @ if and only if f, is irreducible in
@, fr(myy, myp)—abny >0 and (fy(my, my2), ny)=1.

(iii) For any k > 2, fi,1 € the type [k + 1] is irreducible in @, if and only
if, foreach j=1, ..., k, fj € the type [j] is irreducible in &,

Jert(Mie, 23 M1 35 s M s M 15 Mg 2)
= Mot 1 1 Sk (Mt 25 M=, 3 ooy M kmt s Mg 1, M1 2) > 0
and .
(Fer1 (i, 25 P—1,35 -5 M2 ks Mg 15 Mg 2) 5 Mgr ) = 1

(B) If f is irreducible in @, with its multiplicity n > 2, then f ~ fi for
some fi,, € the type [k +1]. B B

(C) The integers a, b, nyy, ..., Ngyy 15 fo(mu, mi2), fi(na; may, my),
oo Jowt (M 25 Mgy 35 oy Ny K, My 1, My o) are topologically invariant.

Proof. (A) It is trivial to prove cases (i) and (ii), as we have seen in §3. To
prove one side of (A) by induction index on k, let f;,, € the type [k + 1] be
irreducible in @&, . Then Hensel’s lemma and blow-ups imply that (a, b) = 1.
After a finite number /4 of blow-ups until the total order of the Ath exceptional
“curve E, = {v =0} becomes abny, ---ng,; ; in one of the local coordinates
(u, v), the defining equation of the total transform may be given topologically
by vemi-menF, where F = F' 4 FRJFM - FP 4 (u + 1) 0!
with some integer ¢ > 0 is irreducible in C{u+ 1, v} and each F; is a proper
transform of fj,y for j=1,...,k in C{u+1,v}. So F; € the type [k]
in C{u + 1, v}, because if F; itself does not belong to the type [k], then
E, must be tangent to the curve F, = 0 and so we may assume that F;, €
the type [k] in the sense of Corollary 1.2. By induction each F; € the type
[j] is irreducible in C{u + 1, v} for 1 < j < k. Since the process of blow-
ups and blow-downs preserves the topological classification of total transforms
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with divisors of irreducible plane curve singularities, each f; € the type [j] is
irreducible in &, for 1 < j < k. Now to prove the remaining part of (A), repeat
a finite number of blow-ups until we can find (k — 1)-exceptional curves each
of which has three distinct intersection points with three components among
other exceptional curves and the proper transform. Then in one of the local
coordinates (u#, v) the local defining equation of the proper transform may be
given topologically as follows:

[(u+ )™t 4 ph)hern 4 (u+ 1)™.29k
where
h=fi(me—1,25 Mie—a 35 oo s Mo ket Mgy 1, Mgy )

- ”k—l,l”k,lfk—l(nk—z,z; Mk—3,35-ns N2 k2, Mp_2 1, Mi_3 2)

and
b= fi(e—i 33 Mke2,as oo Mok, Mg 1, My )
+ g oMt 1 St (Mk—2,23 Mk=3,3 -+ s Mo k2 Mi_2, 1> Mk_2.2)
= Mhrt, 1, M 1 k—t 1 Skt (Mh=2,25 M=3 35 v s Mo ks M2, 15 M3, 2)-

Applying the result in the type [2] to the above proper transform, we see that
0 < bng v+ hng y—ng ynggy i and (g +hing o, ngyyy) = 1 imply the
desired result. To prove the converse is trivial.

(B) Let f = z" + a;y*2z" 2 4+ ... 4+ a,y* be irreducible in &, where the
a; = a;(y) are units in & if they exist, with a; = 0. Then we are going to prove
(B) by induction on the multiplicity n of f at the origin. Let d = (n, a,) > 2,
as otherwise there is nothing to prove. Put n = ad and a, = bd. After a
finite number ~ of blow-ups until the total order of the Ath exceptional curve
Ej = {v =0} becomes abd in one of the local coordinates (u, v), the defining
equation of the total transform may be given topologically by

v F = %[+ 1) + v (u+ 1)472 + -« 4 cqu¥],

where the c;(v) are units in C{u + 1, v} for 2 < i < d if they exist, and the
vi are positive integers. Then we have two cases: (i) d < y4, (ii) d > 74.
Consider the first case (i). By the induction assumption, for some integer k

F = Fk — Fkn£+1] 1 F"k ZF”k 1,3 ‘_FI"J,k—l(u_{_ 1)"2-*vp,

where F; € the type [i] is irreducible in C{u + 1, v} for 1 <i<k-1 and
some p > 0. Now the problem is how to construct f;,,; € the type [k + 1]
such that f ~ f;,,;. By reversing the blow-up process and induction on k,

let us assume that f ~ fi, = fi*" 4+ [ 652 2 ffekymizm for

some integers m,, m, if there are such m;, mz , because f; = z% + y® and
f2, ..., fx can be found easily by induction.

Consider the monomial y™ z! in fi.,, where t = my+an, y+anyns j_;+
any N3Ny k-3 +---+any nz;---ng_y 1Ak 2. Then after 4 blow-ups,

amy +bmy = ab(nynzy - My \Mgyy ) — N2 M31 - Mgy Mg 2
— My N3y N (Mg_y1,3— " — N2 N3 k_1)+ D
>ab
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by the degree of z in f;,;. By Lemma 3.2, it can be proved. Similarly, we
can prove the second case.

(C) Let g, € & be irreducible in the type [k + 1]. Write gy = g +
B8y & Yz where g = 2% 4y, gy = (22 4yF)ymytnzte, L
are defined by induction on k and the multiplicity of gy, is @s21831 - Sk41,1
at 0. Since

any N3y Npyr, 1 = 021~ Skl 15 bnynzy - Mgy 1 = BSar Sk, 15
(a,b)=1 and (a, pB)=1,

it follows that a = o and b = B. Since the process of blow-ups and blow-
downs preserves the topological classification of total transform with divisors
of irreducible plane curve singularities, by induction on k g; ~ f; in & for
1 < j < k. Then by the result of (A), there is nothing to prove.

Using the result in Theorem 4.2, we consider the expression of irreducible
plane curve singularities in terms of the parameter ¢ and define some new
notation.

Definition 4.3. Let

L = fo(myy, my) — abny ,

Iy = fi(ny; ma, my) — nyny fo(myy, myp),

hevr = frrr(Mic 25 Pim1,35 o s M2 ks Mg 1 My 2)
= Mpeyr 1M 1 fie(Pie—y 25 Mie—2, 35 -0y M2 k15 Mgt 1> Mgy 2).

Define L; = [I{}, ni for j=2,...,k.

Let f=z"+ay®z"24... +a,y* be irreducible in &, where each a; =
a;(y) is a unit in & if it exists. Then we get the following (here (B, ..., Bi)
is a greatest common divisor of B, ..., Bi):

(1) f~ fi € the type [1] if and only if y =¢" and z =t*, where 2<n <
an and (n,a,)=1 with a=n and b=aq,.

(2) f~ f, € the type [2] if and only if y = ¢" and z = ¢* + to»*t2 | where
n>(n,a)=ny >(n,a,,hb)=1 with n=an, and a, = bny,.

(3) f ~ f3 € thetype[3]ifandonlyif y = t* and z = o4 pontlaypontloth |
where n > (n, a,) = nyny > (n, ap, Ly) = n3y > (n, ay, Ly, ) = 1 with
n =anjn3 and ap = bn21n31 .

(k+1)f ~ fiy1 € the type [k + 1] if and only if y = " and z = (* +
ta,.+L2+“,+ta,,+L2+--~+Lk +ta’l+L2+"'+Lk+1k+l , Where
n>(n,an) =Ny Ny > (N, an, L)
=N31Ngr,1 >0 > (n, a2, L,y onny Ly)
=Nk >, 02, L, oo, Ly, lyy) =1

with n = any;---ngyy,, and a, = bnyy---ngyy . Thus we have proved the
following theorem, too.
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Theorem 4.4 (Zariski). Let f(y, z) = z"+ayy®z" 2 +---+a,y* be irreducible
in @, where each a; = a;(y) is a unit in @, if it exists, and the «; are positive
integers. Assume that the multiplicity of f at (0,0) is n > 2. Then the
curve defined by f at (0,0) can be described topologically by y = t" and
z=th 4+ th 4 ...+ th with B, = a,, where n < B, < B < --- < Bs and
n>n,p)>--->(n,p,...,B) = 1. If for a given f there is another
homeomorphic parametrization defined by y = t™ and z =" + " + ... + ™
where m<m <m<---<npand m>m,n)>-->m,n,...,m) =1,
then n=m, s=>b and B; = n;. Conversely, the curve defined by the parameter
t with the same inequality as above must be irreducible at 0.

Alternate proof. We are going to prove the theorem by induction on the multi-
plicity of the above f with the coefficient a; zero, without using Theorem 4.2.
First consider such an existence of the above parametrization. If (n, a,) =1,
the theorem is easy to prove. Let d = (n,a,) > 1, where n = n;d -and
an = kid . After m iterations of blow-ups until the total order of the mth ex-
ceptional curve E,, = {v = 0} becomes n,k;d in one of the local coordinates
(u, v), then the defining equation of the total transform of V' = {f = 0} may
be given topologically by

vmhdp = ymhd[(y 4+ 1) 4 v (u+ 1)472 4 - 4 o],

where the ¢; are units in C{u + 1, v} if they exist, and the y; are positive
integers. Consider the local defining equation /4 for the proper transform V(™)
Let r = y; for brevity. Then we have three cases:
(i) d>rand (d,r)=r, (i) d>r and (d,r)<r,and (iii) r >d.
Consider the first case (i). Rewrite
h=AW +a(u+ 120+ 4 a(u+1)%]
as the Weierstrass polynomial in the variable v, where A is a unit, the a; =
ai(u+ 1) are units in C{u + 1, v} if they exist for i =1, ..., r, and the J;
are positive integers. Note that d = J,. Since d = J, is a multiple of r, by
eliminating the coefficient a; of v"~!, & can be rewritten as follows:
Alw” + by(u+ )™ w2 4+ b (u+ 1)™],
where w = v + (a;/r)(u + 1)° , the b; are units in C{u + 1, v} if they exist,
and the m; are positive integers.

Note that (r, m,) < r by Lemma 3.1. So by the induction assumption 4
itself can be parametrized topologically by u+1=¢" and w = 91 +192+-. -+ 1% ,
where r<gqi=m <g;<---<ggand r>(r,q)> >, q1,...,4q)=
1. Then V(™ can also be parametrized topologically in the local coordinate
(u,v) by u+1=1¢ and v =14 +19 +-.-+ 1% with d = 6, = ré6; by Hensel’s
lemma or Theorem 2.2. Since V(™) may be also described homeomorphically
by u+l =t +r+a—dppr+a-dy. .4 p+4-4 and v = ¢4 the curve V = {f = 0}
can be parametrized topologically by y = ¢" and z = o + fent 4 ontriqi—d o
... 4 pentrtae—d  Note that

n<ap<op+r<ap+r+q—d<---<ap+r+qy—d
and

n>n,op)=d>n,an,an+r)>,an,0n+r,an+r+q —d)
>c->(n,an,an+r,... . n+ap+q,—d)=1.
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Thus the case (i) is proved. Similarly the other cases (ii) and (iii) can be
proved. Moreover, the uniqueness of such a parametrizationas y = " and z =
thi4...4th foragiven f and the converse of the theorem can be easily proved
by induction on s. Note that there are exactly s exceptional curves, each of
which has three distinct intersection points with three components among other
exceptional curves and the proper transform in the sense of Corollary 1.2.
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