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THE DIAMETER CONJECTURE
FOR QUASICONFORMAL MAPS IS TRUE IN SPACE

JUHA HEINONEN

(Communicated by Albert Baernstein II)

Abstract. The diameter conjecture for quasiconformal maps is a natural gen-

eralization of the Hay man-Wu theorem on level sets of a univalent function.

Astala, Fernández, and Rohde recently disproved this conjecture in the plane.

Here we show it is true in space.

1. Introduction

Suppose that / is a ASquasiconformal map of a domain D in R" onto

the unit ball B" , and suppose that L is a line in R" , n > 2. The diameter

conjecture states

(1.1) ^(diam/L,)""1 <C(n, K)<oo,
i

where we sum over the components L¡ of L n D. This undeniably esoteric-
looking conjecture originates in the celebrated theorem of Hayman and Wu
[HaW], asserting that the length of f(Lf\D) is bounded by an absolute constant

whenever n = 2 and / is conformai. It was shown in [FHM] that for conformai

maps the length of fL¡ is comparable to its diameter, and (1.1) was conjectured
there for quasiconformal maps in the plane. The «-dimensional version of

the conjecture was stated by Väisälä [V2], who also proved that the sum in
(1.1) converges for all « > 2, provided the power n - 1 is replaced by any

p > n - 1, and diverges in general for powers p < n - 1. Subsequently,
Astala, Fernández, and Rohde [AFR] constructed a counterexample disproving

the diameter conjecture in the plane.

In this note we prove:

1.2.   Theorem. The diameter conjecture is true for zz > 3.

There is one definite reason for this dimensional break: the conjecture is true

in space because quasiconformal balls are subject to more severe restrictions
there than in the plane.   More precisely, we shall make decisive use of the
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fact that the complement of a quasiconformal ball in space is linearly locally

connected (see Fact 3 below).

There is yet another way to view the Hayman-Wu theorem in the plane: if

(Xj) is a hyperbolically separated sequence on Ln.D,then (f(Xj)) is an interpo-
lating sequence for bounded analytic functions in the unit disk or, equivalently,

52/(1 - \f(Xj)\)ôfiX.) is a Carleson measure in B2. This was observed in [GGJ].

Similar result can be formulated and proved in higher dimensions as well. We

say that a sequence (x¡) in D is separated with constant n > 0 if

B(Xi, n dist(jc,, dD)) n B(xj, rj dist(x;, dD)) = 0

for all i ^ j . Here and throughout the paper B(x, r) denotes an open «-ball

centered at x with radius r.

1.3. Theorem. If n > 3 and (x¡) is a separated sequence on L n D with

constant n, then

(1.4) Y,  (1-1/(^)1)""' <C(n, K, ri)(diamB)"-x

f(Xi)€B

for all balls B centered at dB" .

By [AFR], also Theorem 1.3 fails for n = 2. In [V2] Väisälä considered a
more general case where L is replaced with a curve satisfying a "three point

condition". With appropriate modifications, our argument can be used to es-

tablish Theorems 1.2 and 1.3 for such curves as well; for notational simplicity,

we forgo this general situation. We do not know whether one can replace L in

Theorem 1.3 with a p-dimensional plane for 2 < p < n .

Theorem 1.2 is proved in §§2 and 3, and an outline for the proof of Theorem

1.3 is given in §4. In §5 we collect some folklore about quasihyperbolic geodesies,

needed in the proof of the diameter conjecture.
By the measurable Riemann mapping theorem, in the plane ( 1.1 ) is equivalent

to the case when L is a (A^-)quasicircle and f is conformai. The counterexam-

ple in [AFR] is rather complicated, and one can show that in a sense any such

counterexample must be complicated. It is still an open problem to character-

ize the situations when (1.1) holds in the plane; some sufficient and necessary

criteria are given in [AFR] and [HeW].
Articles [GGJ], [FHM], and [0] offer various proofs of the Hayman-Wu the-

orem, and extensions for other types of curves appear in [FH] and [BJ]. A

different generalization of the Hayman-Wu theorem to higher dimensions was

proved by Wu in [W].

2. Preliminary reductions

We equip L with a natural ordering and then assume that each component

L¡ is a bounded interval (a¡, b¡) with end points a¡ < b¡. An easy argument

shows that lim/(x) exists when x approaches either of the end points a¿ or

b¡ along L, (see [FHM, p. 126]); the respective limits will be denoted by f(a¡)
and f(b¡). Let c¡ be a point on L¡ such that

(2.1 ) diam f[a¡, c¡] = diam f[c¡, b¡].

Then by [V2, Theorem 2.3] there is a constant Co = Cn(«, K) such that both

arcs f[a¡, c¡] and f[c¡, b¡] are of Co-bounded turning, this means that the

diameter of any subarc is less than Co times the distance between its end points.
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Next, let m¡ be the midpoint of L,, and let z, = m¡, if m¡ < c¡, and z, = c,

otherwise. Then we have by (2.1) that

diam/L, < diam/[a,, c¡] + diam/[c,, b¡] = 2 diam f[a¡, c,].

In particular, if z, = c¡ < m¡, then diam/L, < 2diam f[a¡, z,], and it follows,

by symmetry, that we only need to verify

(2.2) 5^(diam/[fl/, z¡])n~x < C(n,K) < oo.

To reduce the situation further, let y, be a quasihyperbolic geodesic from

z, to a, in D, as described in §5. Then by the bounded turning property of

f[a¡, z¡] and by [HN, Theorem 6.1] there is a point x¡ £ y¡ such that

(2.3) diam/[a,-, z,] < C0|/(fl/) - /(z,)| « diam/y, « 1 - |/(x,)|.

Here and in what follows we use the notation A « B to indicate that C~ ' A <

B < CA for some constant C > 0 depending only on n and #.

We deduce from (2.2) and (2.3) that it suffices to prove

(2.4) Y,{l-\f(xt)\)H-l<C(n,K)<oo,
i

where x, is as chosen above. In the course of the proof we shall need to replace

some of the points x¡ with new points x¡ that do not necessarily lie on y¡ but

satisfy

l-\f(Xi)\<C(n,K)(l-\f(x¡)\).

To prove (2.4) we need the following three facts.

2.5. Fact 1 [HK, Lemma 6.6]. If y - f(x) is a point in B" , there is a constant

Cx = Cx(n, K) and a set S - Sy on the boundary dB" such that

(2.6) (l-\y\)"~x<Cx\S\

and

(2.7) f~x(w)£B(x,Cxdist(x,dD))

for all w £ S, where \S\ denotes the (n - l)-measure of S. Here we think of

f~x \dBn as its radial extension which is defineda.e. (in fact, capacity everywhere)

on dB".

We see from (2.6) that to prove (2.4) it suffices to show that

J2Xi(w)<C(n,K)< oo
i

for all w £ 9B" , where x¡ is the characteristic function of Sf(Xi). Furthermore,
by (2.7) it suffices to show that each x £R" belongs to at most C(n, K) balls

B(xi, Cx dist(x,, dD)).

2.8. Fact 2 [HN, Theorem 6.2]. There is a constant C2 = C2(n, K) such that

diam y j < C2\a¡ - z¡\.

2.9. Fact 3 [G, Lemma 1]. The complement ÍD of D in R" U {oo} is Cy
linearly locally connected with C3 = C%(n, K). This means that for each x £ R"
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and R>0 each pair of points in B(x, R)C\ZD can be joined in B(x, RC^nCD

and each pair of points in ZD\B(x, R) can be joined in ZD\B(x, R/Cj) .

Furthermore, if a, b £ dB(x, R) n CD, then they belong to the same com-

ponent of (B(x, C3R)\B(x, R/Ci)) n CD. This can be verified by the method
used in [GV, Theorem 6.1] and [G, Lemma 1].

3. Proof of Theorem 1.2

As seen above, it suffices to show that each x £ R" belongs to at most
C(n, K) balls B¡ — B(x¡, Cx dist(x,, dD)). The points x¡ are defined as in
(2.3) but, as alluded to in §2, are subject to change.

We define generations 5?v for v £ Z as

Li e-St   if and only if   2~v~x < \a¡ - x¡\ < 2~v.

We may then assume that

(3.1) L¡ £ Jz^ and L¡ £ £fVj   implies   u¡ - v¡ or \u¡■ - v¡\ > N,

where N is a large number, adjusted later, depending only on n and K.
Fix i and write R¡ = \a¡ -x¡\. The line L meets the sphere dB(a¡, R¡) at

two antipodal points a\ < a¡ < b'¡. Using Fact 3, it is easily seen that there is a
point

Wi £ ZD n (dB(at, Ri)\B(a'i, R¡/C4)\B(b¡, R,/CA))

for some C4 - C4(n, K). More precisely, first join oo to a, by a contin-

uum F in ZD\B(a'j, R¡/C3). If F meets B(b'¡, R¡/C¡), we can pick points

wa. £ dB(b'i, Ri/C2) n Fa, and tu«, e dB(b[, R¡/C¡) n Foo , where Fa¡ and

Foo are, respectively, the a, and oo components of F n C5(¿)-, Ä,/C|). By

the last assertion in Fact 3, we can join wa¡ to Woo by a continuum f in

5(è-, Ri/C3)\B(b'i, Rt/CD . Thus the desired point w¡ can be found from the

set F u F', and we can choose C4 — C\ . It is exactly here where the argument
would fail in two dimensions: no such w¡ need exist.

Write d¡ = dist(x,, dD) and let A, = B(x¡, d¡/2). Standard distortion
estimates for quasiconformal maps (see [VI, 18.1]) together with (2.3) imply

diam/A, m 1 - \f(x¡)\ « diam fy, > dist(/A,, f[a¡, z,]).

Hence, by appealing to well-known modulus estimates, we have

0 < C(n) < mod (/A/,/to, z,];B")

< A-mod (A,, [a,, ¿i] ; D) < Kmod (A,, [a, » «<] ; »"),

so that

(3.2) dist(x,, to , z,]) < C5ti,

for some C5 = C¡(n, K); see, for instance, [VI, 11.9; Vu, II.7].
Next we analyze possible locations of x¡. Suppose first that x, e B(a\, XR{),

where X<(2C4)~X is a small positive constant, depending only on n and K,

which will be adjusted repeatedly in the course of the proof. If dD meets

B(a'¡, 2XR¡), we have by (3.2) that

R¡ - AÄ, < dist(x,, [a,, z,]) < C5d¡ < C5AÀR,,
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which is impossible if A < (4C5+1)_1. Thus we may assume that B(a'¿, 2XR¡) c
D if Xi £ B(a\, XR¡). Then fix another small positive number e = e(n, K) < I

whose value will be determined later. Join x¡ to to, by an arc a along

dB(üi, Ri)\B(b'¡, Ri/C4) such that length a < 2nR¡, and let x\ be the first
point on a for which

(3.3) d¡ = dist(x¡, dD) = eXRi.

Because dD does not meet B(a'¡, 2XR¡) and because e < 1, the point x[

lies outside B(a\, XR¡). Further, it follows straight from the definition for the

quasihyperbolic metric (see §5) that

,      length a     2n
kDÍXi>X^-¿XR-^lX=C{n>K)-

In particular, we deduce from the uniform continuity of quasiconformal maps

in the quasihyperbolic metric [GO, Theorem 3] that

k*«(f(Xi),f(x'i))<C(n,K),

whence

(3.4) l-\f(Xl)\<C(n,K)(l-\f(x¡)\).

Thus, if x, £ B(a'i, XR¡), we replace it with a point x\,

(3.5) x¡ £ dB(ai, Ri)\B(a¡, XRi)\B(b¡, XR¡),

for which (3.3) and (3.4) hold.
As the next case, we consider the situation where

Xi £ dB(ai,Ri)\B(a'l,XRi)\B(b'i,XRi).

If di < eXRi, there will be no changes. If d¡ > eXR¿, then as above we can find

an arc joining x¡ to a point x\ along dB(a¡, Ri)\B(a'¡, XRi)\B(b'¡, XR¡) such
that (3.3) and (3.4) hold. Then we replace x, with x¡.

We are left with the case x, £ B(b'¡, XR¡). This is divided into two subcases
depending on whether

(3.6) dD n B(b'¡, 2XR¡) = 0

or

(3.7) dD n B(b'¡, 2XR¡) / 0.

If (3.6) occurs, then d¡ > XR¡, and using the "arc trick" once more, we replace

x, with a point x\ such that (3.3)—(3.5) hold.
We pause here to divide the set A = {x¡: i - 1,2,...} into two disjoint sub-

sets Ax and A2 , where A2 consists of those points x,, which lie in B(b'¿,XRj)
and for which (3.7) holds, and Ax = A\A2. As regards to Ax, we can assume

by the aforesaid that whenever x, £ Ax, then

(3.8) x¡ £ dB(0i, R¡)\B(a'i, XR,)\B(b'i, XR¡)

and

(3.9) di = dist(x,, dD) <eXR¡.
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Only (3.8) and (3.9) are required in proving the desired finite overlapping of

the balls B¡ — B(x¡, Cxd¡) for x, £ Ax. We do this next and deal with the
residual case A2 later.

3.10. Case Ax. Because d¡ < eXR¡, we have that

XR
dist(Bj, L) > dist(x,, L) - Cxdi > -^- - Cxd¡

>^L-CleXRi=XRi(^-Cxe>j>^f,

provided e < (ACX)~X . On the other hand, it is easy to see that B¡ c B(a¡, 2R¡),
so that B¡ lies in the zone

1 D.

Zi = {^R":j< dist(x, L) < 2R¡}.

Suppose now that x, ,x¡ e Ax with í # /. If the corresponding line segments

Li, Lj belong to the same generation S?v , we have that

2~v~x < Rj < diamyj < C2\a¡ - z¡\

by Fact 2. Thus \a¡-Zj\ > CjX2~v~x > (2C2)~XR,■, and we infer that there only

can be C(n, K) indices j such that a¡ £ B(a¡, 10R¡). On the other hand, if

üj <¿ B(a¡, lORi), then B(aj, 2Rj) n B(a¡, 2R¡) = 0 and hence 5, n 5, = 0 .
Next suppose that L¡ £ 2CVi and Lj £ 2'v¡ with u¿ ^ v¡. By symmetry we

may assume that v¡ > v¡. Then (3.1) gives

Rj = \aj -Xj\< 2-"' < 2~N+2Ri,

and by choosing N such that 2~N+i < X/A, we have 2Rj < XR¡/A. Hence
the zones Z, and Z, cannot meet. Consequently, the balls 5, and B¡ cannot
meet, and we can conclude the proof for the points in A x .

3.11. Case A2. Recall that the points in A2 are those that belong to B(b\,XRi)

with B(b\, 2XR¡)ndD ±0 .If [a¡, z,] does not meet B(b[, y/XRi), then (3.2)
implies

\fXRi - XR, < dist(x;, [a¡, z,]) < C5d¡ < C5AXR¡,

which is impossible for X < (ACs + l)~2. Hence we may assume that there is a

point z\ £ [a¡, Zi\ n B(b\, yfXR¡). We have

dist(a/, B(b'¡, aVXR¡)) > \a¡ -b¡\- aVXR¡ = R¡(1 - A\ÍX) > R¡/2

if X < 1/64. Similarly, by Fact 2,

dist(ô,-, B(z\, IsTXRi)) > \b¡ - z'i\ - iVXRi

> \bi - z¡\ - 3VXRi > \a¡ - z¡\ - 3yrXRi

> C2_1 diamy, - ?>\fXRi > R¡(C^ - 3VÄ) > (2C2)_1iî/

if X < (6C2)~2. A simple argument shows that

B, c B(xí , C\AXR¡) c B(z\, 3^/XR¡) c B(b\, AVXRj),

provided X < (4C[)~2. We deduce that B¡ is contained in a ball B(z\, 3vXR,)
which is centered at a point on the line segment L, and has positive distance
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to both a, and b¡. Therefore, for points in A2, the ball B¡ cannot meet any

Bj for j í i.
This completes the proof of Theorem 1.2.

4. Proof of Theorem 1.3

We only sketch the argument, which is similar to that in the proof of Theorem

1.2.
Suppose that (x,) is a separated sequence on LC\D. Some easy reasoning

using the uniform continuity of quasiconformal maps in the quasihyperbolic

metric shows that each point x, may be assumed to be the center point of a

line segment L, = [a¡, b¡] C L n D such that \a¡ - b¡\ < M dist(L¡, dD) for
some M - M(n, K). Let S, c dB" be the set, given by Fact 1, associated with

f(x¡). It is also proved in [HK, Lemma 6.6] that S¡ c B(f(x¡), Cx(l-\f(x¡)\)),
whence the Carleson measure condition (1.4) follows if we show that each point

x £ R" belongs to at most C(n, A') balls B¡ = B(x¡, Ci dist(x,, dD)).
We may assume as in the proof of Theorem 1.2 that

(4.1) L¡ £ S?Vi and Lj £ S?Vj   implies   u¡ = v¡ or \v¡ -Vj\>N

for some N = N(n, K), where the generations are now defined by declaring

that L¡ £ Sev if and only if 2~v~x < \a¡ - b¡\ < 2~", v £ Z. For each z",

at least one of the balls B(a¿, \\a¡■ - b¡\) or B(b¡, \\a,■■ — b¡\) contains a point
W¡ £ dD such that dist(L,, dD) = dist(L,, w¡), provided M is large enough;

we can assume that w'¡ £ B(a¡, \\a¡ - b¡\). Now replace x, with the point

where L, meets dB(at, \\at - b¡\), and call it still x,. By using Fact 3, we can

find a point
w¡ £ CD n (dB(at, Ri)\B(-Xi, XR¡)),

where X = X(n, K) > 0 is a small constant, i?, = |a, -x,|, and -x, is the point
on dB(a¿, R¡) antipodal to x,.

Next we divide (x,) into two groups depending on whether dD meets

B(x,;, XRj) or not. If the first alternative occurs, then B¡ c B(x¡, CxXRi) c

B(Xi, \Ri), provided X < (4Ci)_1, and hence no Bj can meet B¡ for i ^ j .
For points in the second group, we can use the arc trick as in the proof of

Theorem 1.2 so as to find a point x¡ £ dB(a¿, Ri)\B(x¡, 2~XXR¡) such that

dist(x;', dD) — eXR, for some e = e(n, K) < \ and that the quasihyperbolic
distance between x, and x\ is less than C(zz, K). In this case we replace x,

with x'j and show that only finitely many balls B¡ = B(x[, CxeXR¡) can over-

lap. Indeed, if e is sufficiently small, the balls B¡ are contained in the zone
Z, = {x : 5~lXRi < dist(x,L) < 2R¡}, and therefore, if B¡ n Bj ¿ 0, the
corresponding intervals L, and Lj must belong to the same generation .2£ ,

provided N is large enough. On the other hand, because B¡ c B(a¡, 2R¡), it is

easy to see that at most C(n, K) indices j are such that Bj meets B¡, should
Lj and Lj belong to the same generation.

This completes the proof of Theorem 1.3.

5. Appendix: Quasihyperbolic geodesics up to the boundary

The quasihyperbolic metric in a proper subdomain D of R" is defined by

kD{x>y) = mijydist(dz,dDy
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where the infimum is taken over all rectifiable arcs y in D joining x and

y. There always exists a quasihyperbolic geodesic in D for which the infimum

above is attained. See [GO] or [Vu] for the basic properties of this metric.
Our proof of Theorem 1.2 required geodesies that ran to the boundary. The

existence of such geodesies is probably folklore but nowhere in print, and for a
possible future reference we consider here a somewhat more general situation

that what was needed earlier in the paper.

We assume throughout that D is a proper subdomain of R" with n > 2. By

an endcut in D we mean an arc a c D such that a is a compact arc with one

end point on dD. The subarc of a between z and w is denoted by a[z, w].

We say that an endcut a c D is a quasihyperbolic endcut in D if every

compact subarc of a is a quasihyperbolic geodesic in the usual sense. Now a

boundary point need not be an end point of a quasihyperbolic endcut even if

it is an end point of a straight endcut. As an example, consider the upper half

plane in R2 with the line segments [-1, 1] x {l/k} , k = 1, 2, ... , removed;

then open little gates about the points (0, l/k) with width s^ > 0. The entire

positive X2-axis lies in the resulting domain, but it is easy to see that no quasi-

hyperbolic geodesic will travel through more than three gates, provided e^ -* 0

fast enough. Thus the origin cannot be an end point of any geodesic endcut.

5.1. Theorem. Suppose that D can be mapped onto a uniform domain via a
quasiconformal homeomorphism, and suppose that a £ dD is an end point of

an endcut a c D. Then each b £ D can be joined to a by a quasihyperbolic

endcut in D.

Recall that D is uniform if there is a constant c > 1 such that each pair of

points z ,w £ D can be joined by an arc ß c D satisfying

diam/? < c\z - w\

and
min{diamß[z, x], diam ß[w, x]} < cdist(x, dD)

for all x £ ß .

Proof of Theorem 5.1. Fix b £ D. We may assume that b and a are the end

points of and endcut a. Let a¡ € a be such that a,: —» a, z —► oo, and let

y i be a quasihyperbolic geodesic joining b to a¡. Passing to a subsequence if

necessary, we may assume that y; converges to a continuum ycZ)cR"U{oo}

in the Hausdorff metric; see, e.g., [F, p. 37]. Clearly y contains both a and b ,

and we claim that y(~)dD = {a}. Assuming the contrary and relabeling if nec-

essary, we can find a sequence of points x, 6 y, such that x, —► zo e dD\{a}.
Suppose first that zo is not the point at infinity. Because D is quasiconformally

equivalent to a uniform domain, [HN, Lemma 7.1 and Theorem 6.1] provide us

with arcs /?, that join x, to a[b, a¡] in D suchthat diam/?, < ^dist(x,, dD),

where A is independent of i. Thus

0 < dist(zo, a) < \zo - Xi\ + dist(x,, a)

< \zq - Xj\ + diam /?, < |z0 - x,| + A dist(x,, dD) -> 0,

which is a contradiction. If zo = oo, we use [HN, 7.1 and 6.1] to find arcs /?,

as above, this time having the property that diam /?, < A diam a. This again is

impossible, and we conclude that yndD = {a}.
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Next we show that y is an arc. For this it suffices to show that each z £

y\{a, b} is a cut point of y ; see [N, 4.10.2]. We borrow an argument from

[GNV, Lemma 5.11]. Let (z,) be a sequence in y, converging to z € y\{a, b} .
Then, after passing to a subsequence and relabeling if needed, we have that

y,[a, > zi] and y¡[z¡, b] converge to two continua Ti and T2, respectively.

Since y, [a, > zi] u ?i[zi > b] — y,, the continuum y is the union of Tj and Y2.

Suppose that there is a point z' £ (Yx n T2)\{z} . Then z' is a limit of two

sequences, say (x,) in y¡[a¡ y zi\ and (yi) in y¡[zi, b]. This means that for
sufficiently large indices i the points x, and y, all lie in an arbitrarily small ball
about z' not containing the points z, ; because each z, lies in between x, and

y¡ on a quasihyperbolic geodesic y,, this is easily seen to be a contradiction.

Therefore Tj n T2 = {z} , and it follows that y\{z} is not connected. Thus z

is a cut point of y.
It remains to show that y[b, z] is a quasihyperbolic geodesic between b and

z for z e j\{a}. As above, choose a sequence (z,) from y, converging to z.

Because /<£>(£ , z¿) < M < 00 with M independent of i, the Euclidean lengths
of the geodesies y¡[b, z¡] are uniformly bounded. By the well-known lower

semicontinuity theorem [F, 3.18], we have that

length y[b, z] < lim inf length y¡[b, z¡],
i—»CO

which implies that the length of y[b, z] is finite. Finally, by the continuity of

the density dist(x, dD)~x (and by [F, 3.18]) it is easy to see that

kD{b' Z) - I dist(x, dD) - }™l,lb,Zl] dist(x, dD)

= lim kD(b, z¡) = kD(b, z).
i—»oo

This completes the proof.
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