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(Communicated by J. Marshall Ash)

Abstract. The norm of the operator which averages \f\ in LP{B.n) over balls

of radius S\x\ centered at either 0 or jc is obtained as a function of n , p

and Ô . Both inequalities proved are n-dimensional analogues of a classical

inequality of Hardy in R1 . Finally, a lower bound for the operator norm of

the Hardy-Littlewood maximal function on LP(W) is given.

0. Introduction

A classical result of Hardy [HLP] states that if / is in LP(RX) for p > 1,
then

<ai) (r(uôimd,ïdxï"s^(rmi""y'
and the constant p/(p - 1) is the best possible. By considering two-sided aver-

ages of / instead of one-sided, (0.1 ) can be equivalently formulated as:

<a2) (£(^/>H'¿*f sA(/>H*
We denote by D(a,R) the ball of radius P in W centered at a. Let (Tf)(x)

be the average of \f\ £ Lp(Rn) over the ball D(0, \x\). The analogue of (0.2)

for W is the inequality:

(0.3) ||r/||^<cp(/!)||./-|u,

for some constant Cp(n) which depends a priori on p and n . Our first result

is that the best constant Cp(n) which satisfies (0.3) for all / G LP(R") is

P' — P/(P - 1) » me same constant as in dimension one. Another version of
Hardy's inequality in R" with the best possible constant can be found in [F].

Next we consider a similar problem. An equivalent formulation of (0.1 ) and

(0.2) is

(0.4)
a°° /  1     rx+\x\ \p     \x/p n        ( r°° \xtp

Aw\Umvdx) s^T7>(/j/<H ,
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where / is in U(RX). Let (Sf)(x) be the average of |/| G LP(R") over

the ball D(x, \x\). We compute the operator norm cp>n of S on Ï/ÇR") as
a function of n and p. The precise value of the constant cp t „ is given in
Theorem 2.

In section 3 a lower bound for the operator norm of the Hardy-Littlewood
maximal function on LP(R") is given. Finally, in section 4 the norm on LP(Rn)

of the operator which averages / over the ball of radius S\x\ centered at either
0 or |x| is given as a function of ô, p, and n, for any S > 0.

Throughout this note, co„-X will denote the area of the unit sphere Sn~x

and vn the volume of the unit ball in R" .

1. Hardy's inequality on 1"

In this section we will prove inequality (0.3) with constant Cp(n) = p' =

p/(p - 1). We denote by \A\ the Lebesgue measure of the set A and by Xa
its characteristic function.

Theorem 1. Let f £ LP(Rn), where 1 < p < oo. The following inequality holds:

(1.1)

and the constant p' = p/(p - 1) is the best possible.

Proof. Fix / e //(M"). Without loss of generality, assume that / is nonneg-
ative and continuous. Let R+ denote the multiplicative group of positive real

numbers with Haar measure y. The function t"/p'x[Q,i] is in LX(R+, &) with

norm p'/n . For a fixed 6 in the unit sphere Sn~x, the function t -+ f(td)tnlp

is in LP(R+ , ¿i). The group inequality ||^*A^||¿p < HefH^H-KHii gives:

Note that equality holds in (1.2) if and only if equality holds in \\g * K\\v <
\\g\\Lp\\K\\Li. This happens in the limit by the sequence ge,N - X[t,N]- Since

g(t) = f(td)t"lp , we conclude that equality is attained in (1.2) in the limit by

the sequence

(1.3) fi,N(te) = rn/pXe<t<N       as e-0 and iV ̂  oo.

Note that Tf is a radial function. Expressing all integrals in polar coordinates,

we reduce ( 1.1 ) to a convolution inequality on the multiplicative group K+ . We

have

V„     Jr=Q\JS"-i Jt=0 l        )      r

We apply Holder's inequality with exponents j + -K = 1  to the functions  1

and 6 -► Jtl=0f(rtd)(rt)n/ptn/p' f and then to Fubini's theorem to interchange

the integrals in 6 and r. We obtain that (1.4) is bounded above by

Vn JS"-i Jr=0 \Jt=0 l J      r
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Note that if / is a radial function, then (1.4) and (1.5) are identical. We now
apply (1.2) to majorize (1.5) by

OJÍmïïu>^><^ï p
Lp{K")

using the fact that <ü„_i = nvn . We have now obtained the inequality ||P/||// <

p'||/||lí> • Equality holds when the family of functions (1.3) is radial. There-

fore, the extremal family for inequality (1.1) is \x\~"lpXi<\x\<N, as e -* 0 and
TV —► oo.

2.  A VARIANT OF HARDY'S INEQUALITY ON  R"

The derivation of the «-dimensional analogue of (0.4) is more subtle. Let

B(s, t) denote the usual beta-function jx x'(l - x)sdx. Our second result is

Theorem 2. Let 1 < p < oo and cp,n = p' ^ff2^_1P(¿(i - 1), Ají).  The

following inequality holds for all f in Lp(Rn) :

(2.1)

(/RX^^t,,,)^^^^)"^-!/,1^^^"
and the constant cPtn is the best possible.

Proof. We use duality. Fix / and g positive and continuous with ||/||¿í(r») <

1 and llgHj/^,,) < 1. We will show that / g(x)(Sf)(x) dx <cp,„. We express
both g and Sf in polar coordinates by writing x - rd) and y ■ td.  The

relation |x - y\ < \x\ is equivalent to 0 • </> > t/2r. We obtain

(2.2)

g(x)(Sf)(x)dx
jJw

= /   /   7rjz¡j¡f(y)s(x)XD(x,\x\)(y)dxdy
Jr" Jr" "«I-*I

= 7T II        r P fW)8W)X*-e>t,2r tn djr~d<pdQ
Vn J J(S"-i)2 Jr=OJt=Q l    r

= V- ÍÍ /" *('«'*( Í mrtd)(2rt)h*.8>t tf ̂ -YidtdO
Vn  JJ(S"-^Jr=0 \Jt=0 * J   r

2ííi   mir (f/<****»****%)'*■Vn  JJ(S»-i)i lJr=Q \Jt=Q t )     r

l//>

d<j)dd,
Vn  JJ(S"-')

where G(<j>) = (¡™o8(r<t>)p'r" tO'^' • The bracketed expression in (2.2) is the

LP norm of the group (R+, y*) convolution of the function t-f f(tQ)t* with

the kernel Xio,8^](()t^ at 2r. We therefore estimate (2.2) by

(2.3) ^-[f     G(<t>)F(e)(p\fdy]d(pde,

where F(6) = (/0°° f(r6)prn ¿f)l/p . Let

K(4>-e)= ie\»/p'?l = J±[(<p.8)+r/p',
Jo i        n
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where TV+ denotes the positive part of the number TV".   Next, we need the

following:

Lemma. For any F, G > 0 measurable on Sn~x  and K > 0 measurable on

[-1,1].

(2.4) "/(S"-,)
//        F(6)G(d))K(e-<p)d<pde

J JlS"-1)2

< FlUs-.«^-.) /     K{6.<j>)d<p.
JS"-'IS"

Proof. We may assume that all three quantities on the right-hand side of (2.4)

are finite. Since K depends only on the inner product 6 • <f>, the integral

/5„_, K(6 • 4>) dtp is independent of 6 . Holder's inequality applied to the func-

tions F and 1 with respect to the measure K(6 • 4>) dd gives

/     F(8)K(9-4>)d6

<((   F(e)pK(d-(t))de\   ÍÍ   K(d-(j))de\
(2-5) ,./,/, x W

We will now use (2.5) to prove (2.4).  The left-hand side of (2.4) is trivially

estimated by (/5„_, (/,,,_, F(e)K(d-<t>)dd)pd^lP\\G\\^{S^) ■ Applying (2.5)
and Fubini's theorem we bound this last expression by HFlIz^S"-'^^!^'^-') x

Js„_i K(6 • <j>)d<j). The lemma is now proved. Observe that equality is attained

in (2.4) if and only if both F and G are constants.
We now continue with the proof of Theorem 2.  Applying the lemma and

JL

using the fact that F and G have norm one, we estimate (2.3) by ^-y- x

/5„_, ((8 • (j>)+)" dd. To compute this integral, we slice the sphere in the direc-

tion transverse to (¡>. For convenience we may take <f> = ex = ( 1, 0, ... , 0).

The area of the slice cut by the hyperplane <f>x = s is co„-2(l - 52)V and the

weight of this slice is (1 - s2)-^. We get

/     {(6 ■ <t>)+)7 dd = œn_2 [   sï(l-s2)^ds
(¿■O) JS"-' Js=0

= w„_2Ifi(i(i-l),^).

We now use that nv„ = œn-X to get the final estimate cp<n in (2.2) which

completes the proof of (2.1). It remains to establish that the constant cPt„

is the best possible. For any y £ R", let A(y) be the spherical cap {6 £

Sn~x : \6 - y\ < \y\}. This cap is nonempty if and only if \y\ > 1/2. For

such y, the Lebesgue measure \A(y)\ is con-2Jl/2,,(l-s2):ii~ds. Let G(t) =

X[o,i](t) t"lp' Jt (1 - i2)2^- ds. An easy computation shows that ||l7||l,(r+ ¿¿j =

(-^)/0'(l - s^^sf ds.     Let   h   -   ht<N   be an element of the family
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\x\~"tpXe<\x\<N normalized to have Lp norm one. We have

\\Sh\\l{V) = H ¡ (-±-[        h(y)dy)Pr"-x dcpdr
K Jr=0 J065"-'   \Vnr' JD(r<t>,r) J

= P I        f-^T / " Iees—   h(td)t"-x dddt] rn~xd<pdr
Jr=0J(l>eS»-i\Vn''    Jt=0Jtd€D(r4>,r) /

'LLA^ûAiirmm'"TÏ^'T
jnp-n roo   /    A jfsP       j

(2.7) =afn_2 —p-(on_x /    h(2rt)(2rt)ïG(t)^) r»?-.
vn Jr=o \Jt=o t J       r

The convolution inequality  ||g * L\\v> < H^llz^ll^llz,1   in tne group  (R+, y)
written as

(2'8) L{LHlr,)i2n)tai')dT)Tí (£>"""*) l|c|lV,i>

becomes an equality as e -> 0 and TV -> oo. Inserting (2.8) in (2.7) we obtain

llallí,,.., < <-22-^(t)\IJ1 -S2)^sfdsJ
/•OO

xw„_, /    h(r)pr"-xdr = cp n
Jr=0

since 11A|lie = 1, and equality is attained as e -» 0 and TV -» oo. Theorem 2

is now proved.

3. A LOWER BOUND FOR THE OPERATOR NORM

OF THE HaRDY-LiTTLEWOOD MAXIMAL FUNCTION ON  Lp(R")

Let M(f)(x) = supr>0(vnrnyl jly_x^r\f(y)\dy be the usual Hardy-

Littlewood maximal function on W. The family of functions ff<N(x) —

l-*r"/p>te<|jc|<Ar is extremal for Theorems 1 and 2. Let Ap<„ be the opera-

tor norm of M on Lp(R"). By computing \\M(f tN)\\ij, /\\f iN\\u and letting
e —> 0 and TV —> oo we obtain a lower bound for Apt „ .

Proposition. For 1 < p < oc, let Apt „ ¿t? i«e ¿Vs? constant C that satisfies the

inequality \\Mf\\LP{Rn) < C||/||¿p(Rn) for all f in Lp. Then

(3.1) Ap,„>p'^- supi- /' (Vl-s2)"-3(s+Vs2 + â2-l)ïds
œn-l    <5>1 On J_x

and the supremum above is attained for some ô - on¡p always less than 2.

Proof. The following is only a sketch. Since |-x|~"/'' is in L¡0C(R"), we can

calculate M(\x\-nlp) instead. Observe that M(\x\~nlp) = c\x\-"/p where c =

M(\x\~"lp)(ex) and ex = (1, 0, ... , 0). Also note that the supremum of the

averages of Ixl-"^ over balls of radius r centered at ex is attained for some
r=\ + y where y > 0. We therefore find that

(3.2) c = sup     ,/    N    I'+yrn~p Ar —,
y>o vn(l + y)" Jr=0 r
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where Ar - \{6 £ S"~l : \rd - ex\ < I +y}\. Calculation gives that Ar = co„-X
-i

for r < y and A, = eu„_2 S(r2-y*-2y)/2Ál - s2)^r ds for 2 + y > r > y. We

plug these values into (3.2), and we interchange th^. integration in r and j :

r2+y   rl .        Jr t\     rs+\/s2+y2+2y ,   j„

/      / r*(l-s2)s?ds^ = rf(l-s2)^^-ds.
Jr=Y  Js=¿^ r      J_xJr=y '       r

We now let ô - y+1 and obtain (3.1). Note that the constant on the right-hand

side of (3.1) reduces to the constant cp t„ of Theorem 2 when ô = 1.

4. Final remarks

We end with a couple of remarks. Let cn tP be the constant of Theorem 2.

We observe that cn,p < ^y . This can be shown directly or via the following

inequality which can be found in [HLP]:

(4.1) / f(x)g(x)dx< j f(x)g(x)dx,
Jv Jw

where / and g are integrable and / denotes the symmetric decreasing rear-

rangement of any function /. Let T and 5 be the operators of Theorems 1
and 2. The nonsymmetric decreasing rearrangement of the kernel of S is the

kernel of T. Taking g to be the kernel of S and / in LP n Lx in (4.1), we

obtain the pointwise inequality Sf < Tf. It follows that cn¡p < -^ .

For any ô > 0, we define variants Ts of T and Sg of S as follows:

{TMx)'mrm\L.m)mdy
and

r I       f(y)dy.
JD(x,S\x\)\D(x,ô\x\)\JD{x

Since (T¿f)(x) = (Tf)(ôx), it is immediate that the operator norm of Tô on
Lp(Rn) is pérô-n'i'.

To compute the operator norm of S¿ on Lp(Rn), we repeat the proof of

Theorem 2 verbatim. We obtain the following result:

Theorem. (A) For ô > 1, the operator norm of S¿ on LP(R") is

P'^jï [' (l-s2)^(s + Vs2 + ô2-l)ïds.

(B) For ô < 1, the operator norm of S¿ on Lp(Rn) is

• i
,/ <°»-2   1    f

OJn-l  Ö" Js=
._(1-52)-
'l-<52

(s+Vs2 + ô2- l)ï-(s-Vs2 + S2-l)£ ds.

(3.1) is of course subsumed in conclusion (A) above.
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