A NOTE ON MORITA EQUIVALENCE OF TWISTED C*-DYNAMICAL SYSTEMS

S. KALISZEWSKI

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. We present an elementary proof that every twisted C^* -dynamical system is Morita equivalent to an ordinary system. As a corollary we prove the equivalence $C_0(G/H, A) \times_{\tilde{\alpha}, \tilde{u}} G \sim A \times_{\alpha, u} H$ for Busby-Smith twisted dynamical systems, generalizing an important result of Green.

It is essentially the content of a recent theorem of Echterhoff [5, Theorem 1] that every twisted dynamical system is Morita equivalent to an ordinary system. By avoiding Green's imprimitivity theorem [6, Corollary 5] and appealing directly to the stabilization trick [8, Theorem 3.4] of Packer and Raeburn, we provide an elementary proof of this fact, at the same time generalizing it (in the separable case) to Busby-Smith twisted systems. Thus our main theorem provides a way of lifting much of the theory for ordinary and Green-twisted systems to the more general systems. As an example of its utility, we prove an analog of Green's important equivalence $C^*(G, C_0(G/H, A); \tilde{\tau}) \sim C^*(H, A, \tau)$ [6] for Busby-Smith twisted systems. This, in turn, will form the basis for a process of inducing representations, an imprimitivity theorem, and ultimately a version of the Mackey-Green machine for these twisted systems.

1. Preliminaries

Throughout this note G will be a second-countable locally compact group; A and B will always be separable C^* -algebras. The multiplier algebra of A is denoted by $\mathcal{M}(A)$ and its unitary group by $\mathcal{UM}(A)$. If C^* -algebras A and B are (strongly) Morita equivalent via an equivalence bimodule X (see [10, 11]), we will write $A \sim_X B$ or simply $A \sim B$.

A twisted action of a group G on a C^* -algebra A is a pair (α, u) consisting of a strongly Borel map $\alpha \colon G \to \operatorname{Aut}(A)$ and a strictly Borel map $u \colon G \times G \to \operatorname{UM}(A)$ such that $\alpha_s \circ \alpha_t = \operatorname{Ad} u(s,t) \circ \alpha_{st}$ and $\alpha_r(u(s,t))u(r,st) = u(r,s)u(rs,t)$ for all r,s,t in G. We call the quadruple (A,G,α,u) a (Busby-Smith) twisted dynamical system. (See [2; 8, Definition 2.1].) If the cocycle u is trivial (i.e., identically 1), then we say (A,G,α,u) is an ordinary

Received by the editors June 28, 1993 and, in revised form, September 20, 1993.

1991 Mathematics Subject Classification. Primary 46L55.

Key words and phrases. C*-algebra, dynamical system, Morita equivalence.

The author was supported in part by the Australian Research Council.

dynamical system and write (A, G, α) for short. Note that then α is a Borel homomorphism into the Polish group Aut(A), so is actually continuous [7, Proposition 5]. Thus the ordinary systems are the objects studied in [3] and [4], among others. For every twisted dynamical system there is a (unique) crossed product C^* -algebra $A \times_{\alpha, u} G$ which is a universal object for covariant representations of (A, G, α, u) in multiplier algebras [9].

Two twisted actions (β, v) and (α, u) of G on A are exterior equivalent if there is a strictly Borel map $w: G \to \mathcal{UM}(A)$ such that $\alpha_s = \operatorname{Ad} w_s \circ \beta_s$ and $u(s, t) = w_s \beta_s(w_t) v(s, t) w_{st}^*$ for any s, t in G [8, Definition 3.1].

More generally, suppose (B, G, β, v) and (A, G, α, u) are twisted systems and X is a B-A equivalence bimodule. Let $\operatorname{Aut}(X)$ denote the set of bicontinuous linear bijections ϕ of X which satisfy the ternary homomorphism identity $\phi(x \cdot \langle y, z \rangle_A) = \phi(x) \cdot \langle \phi(y), \phi(z) \rangle_A$. (The analogous identity using B-valued inner products is equivalent.) Then following [1, Definition 2.1], we will say (B, G, β, v) and (A, G, α, u) are Morita equivalent if there is a strongly Borel map $\gamma \colon G \to \operatorname{Aut}(X)$ such that for s, t in G and x, y in X:

- (1) $\alpha_s(\langle x, y \rangle_A) = \langle \gamma_s(x), \gamma_s(y) \rangle_A$.
- (2) $\beta_s(B\langle x, y\rangle) = B\langle \gamma_s(x), (x, y)\rangle$.
- (3) $\gamma_s \circ \gamma_t(x) = v(s, t) \cdot \gamma_{st}(x) \cdot u(s, t)^*$.

We write $(B, G, \beta, v) \sim_{X, \gamma} (A, G, \alpha, u)$ and call (X, γ) a system of imprimitivity implementing the equivalence.

2. The main theorem

Theorem 2.1. Let (A, G, α, u) be a twisted dynamical system, and let \mathcal{K} denote the compact operators on $\mathcal{H} = L^2(G)$. Then there is an ordinary action β of G on $A \otimes \mathcal{K}$ and a map $\delta \colon G \to \operatorname{Aut}(A \otimes \mathcal{K})$ such that

$$(A \otimes \mathcal{K}, G, \beta) \sim_{A \otimes \mathcal{K}, \delta} (A, G, \alpha, u).$$

Proof. We appeal to the Packer-Raeburn stabilization trick [8, Theorem 3.4]. Thus we have a Borel map $w: G \to \mathcal{UM}(A \otimes \mathcal{K})$ which implements an exterior equivalence between an ordinary action $(\beta, 1)$ of G on $A \otimes \mathcal{K}$ and $(\alpha \otimes id_{\mathcal{K}}, u \otimes 1)$.

Let $A\otimes \mathcal{H}$ have the canonical $A\otimes \mathcal{H}-A$ equivalence bimodule structure; so $A\otimes \mathcal{H}$ is the completion of the algebraic tensor product $A\odot \mathcal{H}$ with respect to the norm induced by the A-valued inner product $\langle a\otimes \xi\,,\,b\otimes \eta\rangle_A=\langle \eta\,,\,\xi\rangle_{\mathcal{H}}a^*b$. For s in G, the rule $a\otimes \xi\mapsto \alpha_s(a)\otimes \xi$ defines an automorphism of $A\odot \mathcal{H}$ which satisfies condition (1) for this product, so is isometric with respect to the induced norm, and thus extends to a map $\alpha_s\otimes \mathrm{id}_{\mathcal{H}}$ of $A\otimes \mathcal{H}$ into itself. Then for x in $A\otimes \mathcal{H}$, the map $s\mapsto \alpha_s\otimes \mathrm{id}_{\mathcal{H}}(x)$ is Borel, using the fact that $s\mapsto \alpha_s(a)$ is Borel for a in A, together with a routine density argument.

Now define $\delta_s : A \otimes \mathcal{H} \to A \otimes \mathcal{H}$ by

$$\delta_s(x) = w_s^* \cdot \alpha_s \otimes \mathrm{id}_{\mathscr{K}}(x) .$$

Then straightforward calculations on elementary tensors in $A \otimes \mathcal{H}$ verify that each δ_s satisfies the ternary homomorphism identity, and that the map $s \mapsto \delta_s$ satisfies conditions (1)-(3) above. For example, for any s, t in G and $a \otimes \xi$

in $A \otimes \mathcal{H}$ we have

$$\delta_{s} \circ \delta_{t}(a \otimes \xi) = w_{s}^{*} \cdot \alpha_{s} \otimes \operatorname{id}_{\mathscr{K}}(w_{t}^{*} \cdot \alpha_{t} \otimes \operatorname{id}_{\mathscr{K}}(a \otimes \xi))$$

$$= w_{s}^{*} \alpha_{s} \otimes \operatorname{id}_{\mathscr{K}}(w_{t})^{*} \cdot \alpha_{s} \circ \alpha_{t}(a) \otimes \xi$$

$$= (w_{s}^{*} \alpha_{s} \otimes \operatorname{id}_{\mathscr{K}}(w_{t})^{*} u(s, t) \otimes 1) \cdot \alpha_{st} \otimes \operatorname{id}_{\mathscr{K}}(a \otimes \xi) \cdot u(s, t)^{*}$$

$$= w_{st}^{*} \cdot \alpha_{st} \otimes \operatorname{id}_{\mathscr{K}}(a \otimes \xi) \cdot u(s, t)^{*}$$

$$= \delta_{st}(a \otimes \xi) \cdot u(s, t)^{*}.$$

In particular, condition (1) (or (2)) implies each δ_s is isometric, and therefore bicontinuous since each δ_s is invertible. Thus each δ_s belongs to Aut $(A \otimes \mathcal{H})$.

It only remains to show that the map $s \mapsto \delta_s$ is strongly Borel. To see this, fix x in $A \otimes \mathcal{H}$ and let $\{e_i\}$ be a countable approximate identity for $A \otimes \mathcal{H}$. Then each of the maps $s \mapsto w_s^* e_i$ and $s \mapsto \alpha_s \otimes \mathrm{id}_{\mathcal{H}}(x)$ are Borel, so that $s \mapsto w_s^* e_i \cdot a_s \otimes \mathrm{id}_{\mathcal{H}}(x)$ is Borel for each i. Since $s \mapsto \delta_s(x)$ is the pointwise limit of these Borel maps, it too is Borel, and the theorem follows. \square

We remark that the analogous theorem for separable Green-twisted systems can be derived from Theorem 2.1, proving in essence Echterhoff's [5, Theorem 1]. This just requires verifying that the process of converting Green-twisted systems into Busby-Smith systems described in [8, §5] preserves the respective notions of Morita equivalence. While not complicated, the proof is lengthy, so we will not include it here.

Now let H be a closed subgroup of G, and denote an element tH of the quotient space G/H by \dot{t} . We define the diagonal twisted action $(\tilde{\alpha}, \tilde{u})$ of G on $C_0(G/H, A)$ as follows:

$$\tilde{\alpha}_s(f)(\dot{t}) = \alpha_s(f(s^{-1}\dot{t}))$$
 and $[\tilde{u}(s,t)f](\dot{r}) = u(s,t)f(\dot{r})$.

Then we have the promised analog of Green's result [6, Corollary 5].

Corollary 2.2. Let (A, G, α, u) be a twisted dynamical system, and let H and $(\tilde{\alpha}, \tilde{u})$ be as above. Then

$$C_0(G/H, A) \times_{\tilde{\alpha}, \tilde{\mu}} G \sim A \times_{\alpha, \mu} H$$
.

Proof. Let $(A \otimes \mathcal{H}, G, \beta)$ be the ordinary system which by Theorem 2.1 is Morita equivalent to (A, G, α, u) . Then it is straightforward to check that $C_0(G/H, A \otimes \mathcal{H})$ is a $C_0(G/H, A \otimes \mathcal{H}) - C_0(G/H, A)$ equivalence bimodule when equipped with pointwise actions and inner products. Moreover, calculations similar to those in the proof of Theorem 2.1 verify that the diagonal action $\tilde{\delta}$ of G on $C_0(G/H, A \otimes \mathcal{H})$ defined by $\tilde{\delta}_s(x)(i) = \delta_s(x(s^{-1}i))$ yields

$$(C_0(G/H, A \otimes \mathcal{K}), G, \tilde{\beta}) \sim_{C_0(G/H, A \otimes \mathcal{K}), \tilde{\delta}} (C_0(G/H, A), G, \tilde{\alpha}, \tilde{u}).$$

Because Morita equivalent twisted systems have Morita equivalent crossed products [1, Theorem 2.3], we have $C_0(G/H, A) \times_{\tilde{\alpha}, \tilde{u}} G \sim C_0(G/H, A \otimes \mathcal{X}) \times_{\tilde{\beta}} G$.

Next, notice that restricting the twisted actions (α, u) and $(\beta, 1)$ to H yields Morita equivalent systems (A, H, α, u) and $(A \otimes \mathcal{K}, H, \beta)$. Again using [1, Theorem 2.3], we have $A \otimes \mathcal{K} \times_{\beta} H \sim A \times_{\alpha, u} H$. But Green's [6, Corollary 5] applied to $(A \otimes \mathcal{K}, G, \beta)$ gives us $C_0(G/H, A \otimes \mathcal{K}) \times_{\hat{\beta}} G \sim A \otimes \mathcal{K} \times_{\beta} H$; the corollary now follows by the transitivity of Morita equivalence. \square

The development of a theory of induced representations for Busby-Smith twisted systems—in particular, for the Mackey-Green machine—will require

not only the abstract Morita equivalence of Corollary 2.2 but a concrete equivalence bimodule which implements it. To be sure, the use of transitivity in the above proof implicitly gives such a bimodule; namely, the balanced tensor product of the three bimodules involved. This three-fold tensor product bimodule turns out to be extremely unpleasant to work with. We would prefer a bimodule completion of $B_c(G, A)$, the bounded Borel functions with compact support, which would be analogous to Green's $C_c(G, A)$. Such a bimodule does exist; however, technical difficulties arise in proving this which are beyond the scope of this note. The general process of inducing covariant representations of Busby-Smith twisted dynamical systems, as well as the particular problem of providing a workable equivalence bimodule for Corollary 2.2 are addressed in work currently in preparation.

ACKNOWLEDGMENT

The author is grateful to Iain Raeburn for many helpful conversations and for his hospitality while visiting the University of Newcastle.

REFERENCES

- 1. Huu Hung Bui, Morita equivalence of twisted crossed products, preprint, 1993.
- 2. Robert C. Busby and Harvey A. Smith, Representations of twisted group algebras, Trans. Amer. Math. Soc. 149 (1970), 503-537.
- 3. F. Combes, Crossed products and Morita equivalence, Proc. London Math. Soc. (3) 49 (1984), 289-306.
- 4. R. Curto, P. Muhly, and D. Williams, Cross products of strongly Morita equivalent C*-algebras, Proc. Amer. Math. Soc. 90 (1984), 528-530.
- 5. Siegfried Echterhoff, Morita equivalent twisted actions and a new version of the Packer-Raeburn stabilization trick, preprint, 1992.
- Philip Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), 191-250.
- C. C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), 1-33.
- 8. Judith Packer and Iain Raeburn, Twisted crossed products of C*-algebras, Math. Proc. Cambridge Philos. Soc. 106 (1989), 293-311.
- 9. _____, Twisted crossed products of C*-algebras. II, Math. Ann. 287 (1990), 595-612.
- 10. Marc A. Rieffel, Induced representations of C*-algebras, Adv. Math. 13 (1974), 176-257.
- 11. _____, Morita equivalence for operator algebras, Operator Algebras and Applications (Richard V. Kadison, ed.), Amer. Math. Soc., Providence, RI, 1982, pp. 285-298.

Department of Mathematics and Computer Science, Dartmouth College, Hanover, New Hampshire 03755-3551

Current address: Department of Mathematics, University of Newcastle, Callaghan, New South Wales 2308, Australia

E-mail address: kaz@frey.newcastle.edu.au