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Abstract. We present an elementary proof that every twisted C*-dynamical

system is Morita equivalent to an ordinary system. As a corollary we prove

the equivalence Cq(G/H , A) xáü G~A xQjU H for Busby-Smith twisted

dynamical systems, generalizing an important result of Green.

It is essentially the content of a recent theorem of Echterhoff [5, Theorem

1] that every twisted dynamical system is Morita equivalent to an ordinary sys-

tem. By avoiding Green's imprimitivity theorem [6, Corollary 5] and appealing

directly to the stabilization trick [8, Theorem 3.4] of Packer and Raeburn, we

provide an elementary proof of this fact, at the same time generalizing it (in the

separable case) to Busby-Smith twisted systems. Thus our main theorem pro-

vides a way of lifting much of the theory for ordinary and Green-twisted systems

to the more general systems. As an example of its utility, we prove an analog of
Green's important equivalence C*{G, C0{G/H, A) ; f) ~ C*(H, A, t) [6] for
Busby-Smith twisted systems. This, in turn, will form the basis for a process of
inducing representations, an imprimitivity theorem, and ultimately a version of

the Mackey-Green machine for these twisted systems.

1. Preliminaries

Throughout this note G will be a second-countable locally compact group;
A and B will always be separable C* -algebras. The multiplier algebra of A is

denoted by Jf(Ä) and its unitary group by $¿J?(A). If C*-algebras A and B
are (strongly) Morita equivalent via an equivalence bimodule X (see [10, 11]),

we will write A~x B or simply A ~ B.

A twisted action of a group G on a C*-algebra A is a pair (a, u) consisting

of a strongly Borel map a: G —► Aat(A) and a strictly Borel map u: G x

G —> %¿#(A) such that as o at = Adu(s, t) o as, and ar(u(s, t))u{r, st) =

u(r, s)u(rs, t) for all r, s, t in G. We call the quadruple (A,G,a,u) a

(Busby-Smith) twisted dynamical system. (See [2; 8, Definition 2.1].) If the
cocycle u is trivial (i.e., identically 1 ), then we say (A, G, a, u) is an ordinary
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dynamical system and write (A, G, a) for short. Note that then a isa Borel
homomorphism into the Polish group Aut(A), so is actually continuous [7,

Proposition 5]. Thus the ordinary systems are the objects studied in [3] and

[4], among others. For every twisted dynamical system there is a (unique)

crossed product C*-algebra A xQ u G which is a universal object for covariant

representations of (A, G, a, u) in multiplier algebras [9].

Two twisted actions (/?, v) and (a, u) oî G on A axe exterior equivalent

if there is a strictly Borel map w: G —> ̂C^(A) such that as = Adws o ßs and

u(s, t) — wsßs(wt)v(s, t)w*t for any 5, t in G [8, Definition 3.1].

More generally, suppose (B, G, ß, v) and (A, G, a, u) are twisted sys-

tems and X is a B - A equivalence bimodule. Let A\xX(X) denote the set

of bicontinuous linear bijections 4> of X which satisfy the ternary homomor-

phism identity 4>{x • (y, z)A) = (f>(x) • (4>{y), 4>(z))A ■ (The analogous identity

using 5-valued inner products is equivalent.) Then following [1, Definition

2.1], we will say (B, G, ß, v) and (A, G, a, u) are Morita equivalent if there

is a strongly Borel map y: G -> Aut(X) such that for 5, t in G and x, y in

X:

(1) as{(x,y)A) = {ys(x), ys{y))A.

(2) ßs(B(x, y)) = b(7s(x) , (x, y)).

(3) ys o yt(x) = v(s, t) • ysl{x) • u{s, t)*.

We write (B, G, ß, v) ~x,y {A, G, a, m) and call (X, y) a system of imprim-

itivity implementing the equivalence.

2. The main theorem

Theorem 2.1. Let (A, G,a,u) be a twisted dynamical system, and let 3? de-

note the compact operators on %f = L2(G). Then there is an ordinary action ß

of G on A® 3? and a map S: G —> Aut(A <g> %?) such that

{A®3?, G, ß) ~A®jr,ö (A, G,a, u).

Proof. We appeal to the Packer-Raeburn stabilization trick [8, Theorem 3.4].

Thus we have a Borel map w: G —► ^¿#(.4®3f) which implements an exterior

equivalence between an ordinary action (/?, 1) of G on A®Ji and (a ®

idjr,«®l).
Let Atgiß? have the canonical A®J?-A equivalence bimodule structure; so

A®%? is the completion of the algebraic tensor product A®^ with respect to

the norm induced by the ,4-valued inner product (a®£, b® n)A = (n, ¿¡)^a*b.

For s in G, the rule a ® Ç ̂  as(a) ® Ç defines an automorphism of A ©<%*

which satisfies condition (1) for this product, so is isometric with respect to

the induced norm, and thus extends to a map as ® \á%- of A ® %? into itself.

Then for x in A ® %?, the map s i-> as ® id^(x) is Borel, using the fact that

s h-> as{a) is Borel for a in A , together with a routine density argument.

Now define Ss: A®^ ^ A®^ by

ôs(x) = w* • rx, ® id^x).

Then straightforward calculations on elementary tensors in A ® %? verify that

each Ss satisfies the ternary homomorphism identity, and that the map s >-* ôs

satisfies conditions (l)-(3) above. For example, for any s, t in G and a®£
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in A ® ß? we have

Ss o ôt(a ® £) = w* • as ® id^(w* • at ® id^{a ® £))

= w*sas ® \áx{wt)* • as o a ¡(a) ® £,

= (w;as ® id^(wt)*u(s, t) ® 1) • ast ® id^(a ® £) • u(s, t)*

= w;t • ast ® \dT(a ® £) • u(s, t)*

= âst(a ® Ç) • u{s, t)*.

In particular, condition (1) (or (2)) implies each Ss is isometric, and therefore

bicontinuous since each 6S is invertible. Thus each 6S belongs to Aa^A®^).

It only remains to show that the map s y-+ ôs is strongly Borel. To see this,

fix x in A ®%? and let {e¿} be a countable approximate identity for A ®3?.

Then each of the maps 5 >-> w*e¡ and s i-> as ® id^(x) are Borel, so that

s i-+ w¡e¡ • as ® id^-(x) is Borel for each /. Since 5 i-> Ss(x) is the pointwise

limit of these Borel maps, it too is Borel, and the theorem follows.   D

We remark that the analogous theorem for separable Green-twisted systems

can be derived from Theorem 2.1, proving in essence EchterhofPs [5, Theorem

1]. This just requires verifying that the process of converting Green-twisted

systems into Busby-Smith systems described in [8, §5] preserves the respective

notions of Morita equivalence. While not complicated, the proof is lengthy, so

we will not include it here.

Now let H be a closed subgroup of G, and denote an element tH of the

quotient space G/H by /. We define the diagonal twisted action (à, ü) of G

on Cq(G/H , A) as follows:

äs(f)(i) = as(f(s-li))    and    [ü(s,t)f](r) = u(s,t)f(r).

Then we have the promised analog of Green's result [6, Corollary 5].

Corollary 2.2. Let (A, G, a, u) be a twisted dynamical system, and let H and

(q , u) be as above. Then

C0(G/H,A)xä>üG~AxaiUH.

Proof. Let (A®3F,G,ß) be the ordinary system which by Theorem 2.1 is

Morita equivalent to (A, G, a, u). Then it is straightforward to check that

C0{G/H,A®^) is a C0{G/H,A®JF)- C0(G/H, A) equivalence bimodule
when equipped with pointwise actions and inner products. Moreover, calcu-

lations similar to those in the proof of Theorem 2.1 verify that the diagonal

action S of G on C0(G / H, A ® Jf) defined by Ss(x)(i) = Ss(x{s-li)) yields

(C0(G/H,A®Jr),G,ß)~Co{G/H>A9r)J(Co(G/H,A),G,ä,ü).

Because Morita equivalent twisted systems have Morita equivalent crossed prod-

ucts [1, Theorem 2.3], we have C0(G/H, A) xá>a G ~ C0(G/H, A ®3?) xßG.

Next, notice that restricting the twisted actions (a, u) and (/?, 1) to H

yields Morita equivalent systems (A, H, a, u) and (A®Ji,H,ß). Again

using [1, Theorem 2.3], we have A®3fxßH~A xau H. But Green's [6,

Corollary 5] applied to {A ®Jf, G, ß) gives us C0(G/H, A®J?)xßG ~ A®

<3fxßH;the corollary now follows by the transitivity of Morita equivalence.   D

The development of a theory of induced representations for Busby-Smith

twisted systems—in particular, for the Mackey-Green machine—will require
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not only the abstract Morita equivalence of Corollary 2.2 but a concrete equiv-

alence bimodule which implements it. To be sure, the use of transitivity in the

above proof implicitly gives such a bimodule; namely, the balanced tensor prod-

uct of the three bimodules involved. This three-fold tensor product bimodule

turns out to be extremely unpleasant to work with. We would prefer a bimodule

completion of BC(G, A), the bounded Borel functions with compact support,
which would be analogous to Green's CC(G, A). Such a bimodule does ex-

ist; however, technical difficulties arise in proving this which are beyond the

scope of this note. The general process of inducing covariant representations
of Busby-Smith twisted dynamical systems, as well as the particular problem of
providing a workable equivalence bimodule for Corollary 2.2 are addressed in

work currently in preparation.
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