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OSCILLATORY SINGULAR INTEGRALS
ON HARDY SPACES ASSOCIATED WITH HERZ SPACES

SHANZHEN LU AND DACHUN YANG

(Communicated by J. Marshall Ash)

Abstract. In this paper, it is proved that the oscillatory singular integral oper-

ators of nonconvolution type are bounded from Hardy spaces associated with

Herz spaces to Herz spaces.

1. Introduction

Let T be an oscillatory singular integral operator defined by

(1.1) Tf(x) = p.v.[ eiP^x^K(x-y)f(y)dy,
Jw

where P(x, y) is a real-valued polynomial on Rn x R" and K is a Calderön-

Zygmund kernel.

It is proved by D. H. Phong and E. M. Stein in [6] that T is a bounded
operator from HE to Lx provided P(x,y) is a real bilinear form, where

HE is certain variant of the Hl space. Later, this result is extended into the

case of general P(x, y) by Y. B. Pan in [5]. For general P(x, y), it is still

an interesting problem whether T is a bounded operator from Hx to Lx.

Recently, some new Hardy spaces HKP associated with Herz spaces Kp are
introduced by the authors in [4] and [8]. The space HKP is defined by

(1.2) HKp = {f:Gf£Kp},

where Gf is the Grand maximal function of /. An interesting fact shown in

[8] is that HKP is the localization of H1 at the origin. It is easy to see that

the relation between HKP and Kp is similar to one between Hl and Lx.

In this paper, we shall prove that T defined by (1.1) is a bounded operator

from HKP to Kp. A counterexample shows that there exists an operator T

defined by (1.1), such that T is not a bounded operator from HKP to itself.

To formulate our result, let us first introduce some definitions.
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Definition 1.1 (see [3]). Let 1 < p < oo and l/p+l/p' = I. The Herz space

Kp(Rn) consists of those functions / G Lfoc(R"\{o}) for which

ll/lk:=E2*"/''11^*11» <00'

where Xk = Xck, Ck = Qk\Qk-X, and Qk = {x : \x\ < 2k}.

Definition 1.2 (see [4]). Let 1 < p < oo . A function a(x) on R" is said to be

a central (1, />)-atom if

(1) Suppa c Q, where Q is a ball centered at the origin;

(2) \\a\\p<\Q\xlp-x;
(3) ¡a(x)dx = 0.

Now, we can state our result as follows.

Theorem. Let 1 < p < oo, P(x, y) be a real-valued polynomial on R"xE",

VyP(0,y) = O, and T be defined as in (1.1). Then T maps HKp(Rn) into
Kp(Rn) and

\\Tf\\Kp<C\\f\\HKp,

where C depends only on the total degree of P(x, y) but not on the coefficients

ofP(x,y).

2. Proof of the Theorem

To prove the Theorem, we need two lemmas.

Lemma 2.1. Let f £ Ll(Rn) and 1 < p < oo. Then f £ HKp(Rn) if and only
if f can be represented as

f(x) = Y,*-Mx),
i

where each a¡ is a central (1, p)-atom and £,- \h\ < °°. Moreover,

ll*^:-l|ö/||ir,~inffe^l}.

where the infimum is taken over all decompositions of f as above.

See [8] for the proof, and see [4] for other characterizations of HKP .
The following lemma belongs to Y. B. Pan [5].

Lemma 2.2. Let <p G C0°°(R") satisfy

( 1   for \x\ < 1,

9(X) = \0 for\x\>2,

and let \p £ C^(Rn) satisfy

1   forl<\x\<2,

¥{X' 'orW>4.

il   fi>rl<\x\

X)~\0  for \x\ < I

Define Tk by

Tkf(x) = y/(x/2k) [ eiP^x^<p(y)f(y)dy.
Jr"
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If P(x, y) satisfies

P(x,y)=      Yl     aaßXayß + Q(x,y),
\a\>\, \ß\=l

where Q(x, y) is a polynomial with degree in y less than or equal to I - I,

then for each TV > 0 (large enough) we have

\\Tk\\L^L2<C2"k\aaoßJ-x'2Nl2-^\/2Nl>

where \aaoßo\ = max^i, \ßl=i\aaß\.

Proposition 2.1. Let ô > 0. Then we have

\\f(S-)\\Kp~â-n\\f\\Kp.

Proof. For any ô > 0, there exists a ¿o G Z such that 2^ < ó < 2*°+1. By
Definition 1.1,

Up

i/p

\\f(S-)\\Kp = J22kn/pl ([  \f(¿*)\pdx"

<Y^2kn'pl ô-n'p ( [ \f(y)\pdy)

< x-nip1-künipl Y^2(k+k«)nlP' ( (     \f(y)\"dy J

keZ VCl<+ko J

+ s-n'p2-{ko+X)n/p' V 2{k+ko+X)"fp' ( /        \f(y)\p dy

kez VCk+k0+i )

<CÔ'n\\f\\Kp.

On the other hand,

ll/lk, = \\f(S-xs-)\\Kp < cs"\\f(S.)\\Kp.

This finishes the proof of Proposition 2.1.

By Lemma 2.1, it is easy to see that the proof of the Theorem is reduced to
the following proposition.

Proposition 2.2. Let l<p<oo, P(x, y) be a real-valued polynomial, VyP(0,y)

= 0, and T be defined as in ( 1, 1 ). Then for any central ( 1, p)-atom a,

\\Ta\\Kp<C,

where C is independent of a and the coefficients of P(x, y).

Proof. Let Supp a c Q and Q be a ball centered at the origin with radius ô .
If we write b(x) = ôna(ôx), then b(x) is a central (1, p)-atom supporting on

unit ball B(0, 1). We also have

Ta(ôx) =ô-"Txb(x)

:=¿-"p.v. / eiP{Sx<ôy)Kx(x-y)b(y)dy,
JR"
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where Kx(x) = ônK(Ôx). By Proposition 2.1, we obtain

\\Ta\\Kt~\\Txb\\Kp.

Let Px(x,y) = P(ôx, ôy).   Note that VyPx(0,y) = 0 and Kx  is also a
Calderón-Zygmund kernel. We may assume Tx = T. Thus, it suffices to show

(2.1) \\Tb\\Kp<C,

where C is independent of b and the coefficients of P(x, y) and b is a central
(1, p)-atom supporting on unit ball B(0, 1).

We now turn to prove (2.1) by using induction on the degree of y, I, in

P(x, y). If / = 0, then

\Tb(x)\ =

Thus,

o.y.JK(x,y)b(y)dy

\\Tb\\Kp = y£2kn/p,\\(Tb^\\p
kei

= £... + £...:=S1+S2.

k<0 k>0

By L^-boundedness of Calderón-Zygmund operators,

Sx < CY/2kn'p'\\b\\p = CY,2kn/p' = C.
k<0 k<0

From the condition of K(x, y),

\K(x, y) - K(x, 0)| < C\y\/\x - y\n+x,    if \y\ < \x - y\/2,

it follows that

Tb(x) = J b(y)[K(x, y) - K(x, 0)] dy

and

S2 = J22k"/p'\\(Tb)Xk\
k>0

\ P T l/P

\b(y)\ \y\<cT2k"'p'\[ ([
kTo [Jck\JB(0,l) |x-y|"+1

i/p

dy     dx

<CV2^ ( Í ]     \\b\
k>0 VC*  '    ' J

< çSp jknjp' j-k\\n+\)p-n\lp _ c\^ 2~k = C.

k>0 k>0

Therefore, (2.1) holds for / = 0. Let us now consider the case of / > 0. We

assume that (2.1) holds for / - 1 by induction. Since VyP(0, y) - 0, we can

write
P(x,y)=      Yl     aaßxayP + Q(x,y),

\a\>\,   \ß\=l

where Q(x, y) is a polynomial with degree in y less than or equal to / - 1

and VyQ(0, y) = 0. Denote

Ka,I = . .max     \aaß\
\a\>\ ,   |0|=/
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and

(2.2) r = max{3,|flQ0Ar1/"o«'l}.

Since r > 3, we may assume 2jo < r < 2;o+1 for some jo £ N. We now write

\\Tb\\Kp =Y2Jn,P'\\(Tb)Xj\\p + it2Jn/P'\\(Tb)Xj\\P

T<0 7=1

+   £   2J"lp'\\(Tb)Xj\\P

J>Jo+l

:=h+h + h.

By L^-boundedness of oscillatory singular integral operators (see [7]), we have

I\ <CY2J"/P'\\b\\p = Cj22Jn/P' = c-
;'<o ;<0

To estimate I2, we may assume jo > 2. In this case, r = |ßanß>l_1/'Qo' • ^y

induction assumption,

/2 = ¿2^'iKr¿)^||p

¿2J'"/"' I /    / (V^-v) -e'ß(x^))/s:(x-y)e(y)i/y

¿2^/"'| / 1/ e'^-^x-y^y)^

<
1/p

i/x

+

i/p

dx

< C V 2;n/p'
/j|yi<i

exp ( i     Y     aaßXayß

\a\>\,   \ß\=l

- 1 \b(y)\dy

<c   y   \"«ß\Y2Jn/pl ( / w(H~"

<C E Ifla/»I¿2J'|Q|+C
kl>i, Ip>/        T=i

<c    £    l^l^' + c
l«l>i, \ßH

<Cx\aaoßo\r^ + C = Ci + C.

I/P

dx}     +C

\i/p

îpdx)     +-C

It remains to estimate h . Let <p and y/ be the functions as in Lemma 2.2.
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Then

h=   Y  2Jn/pl\\(Tb)Xj\\p
T>To+l

Y  2jn/p'\l  (J  \K(x-y)-K(x)\\b(y)\dyy dx
7>yo+l »     ' •

+   E  2Jn/P'l [  én-p\í e^x^b(y)dy" dx)
T>To+i l/c' ll     ]Jr" )

* E 2Jtt,PiÎrïxj^Y+ T, ̂ «'Wi,
j>j0+l VCJ I    ' / j>Jo+l

<C+   Y  2-M"\\Tjb\\p.
;>To+i

By Lemma 2.2, we have

\\Tjb\\2 < C2J"/2\aaoßo\-x/2N'2-J^/2Nl\\b\\2.

It is easy to check from the definition of 7} that

||7)6||oo<C||è||oo

and

||7)*||,<C2>l*lli.
By the interpolation theorem, we obtain

\\Tb\\   <i C2Jn/P\a^ßorl,N'P'2-Jlao]/Nlp'\\b\\p   forl<p<2,

J  II" - j C2Jnlp\aQoßo\-x'Nlp2-J\a°VNlp\\b\\p     for 2 < p < oo.

It follows from the above and (2.2) that if 1 < p < 2, then

h<C + C\aaoßo\-x'Nlp'   Y  2-J^'Nlp'

j>J0+i

<C + C(\aaoßy^)-xlNlp' <C;

and if 2 < p < oo, then

h<C + C\aaoßo\-x/Nlp  Y  2-jlaMNIp

T>To+i

<C + C(Ko/îo|rlaol)-'/Mp<c

This completes the proof of (2.1 ) and therefore the proof of Proposition 2.2.

Remark 2.1. Recently, Hardy spaces HAP(R") related to the Beurling algebras
Ap(Rn) have been introduced by Y. Z. Chen and K. S. Lau in [1] and inde-

pendently by J. Garcia-Cuerva in [2]. It has been proved by the authors in [4]

that
HKp n L» = HAP

and

(2.3) \\f\\HA, ~ \\f\\HKp +
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On the other hand, it is easy to show that

(2.4) H/IU, ~ \\f\\Kp + \\f\\P.
Thus, from (2.3), (2.4), and the Theorem, it is easy to see that under the con-

ditions of Theorem, T defined by (1.1) is a bounded operator from HAP(R")
to Ap(Rn) and

\\Tf\\AP < C\\f\\HAt.

Remark 2.2. A counterexample shows that there exists an operator T defined

by (1.1) such that T is not a bounded operator from HKP to itself. Let us

consider n = 1. Take a g £ HKP(R) such that Hg(x) ^ 0 a.e., where H g

is the Hubert transform of g. Let P(x, y) = tx, t G R. Suppose T is
a bounded operator from HKP into itself. Then Tg £ HKP(R). Thus, by
Lemma 2.1, we have

/ Tg(x) dx = 0.

This is

IeitxHg(x)dx = 0,        t£R.

Hence, (Hg)v(t) = 0, t £ R. It has been proved for the case of / = 0 in

the proof of Theorem that H maps HKP into Kp . Thus, H g G Kp c Lx.
Combining it with (Hg)y(t) = 0, t £ R, we get a contradiction,

Hg(x) = 0   a.e.

This confirms the above assertion. However, for the oscillatory integral operator

T of convolution type with P(x, y) = P(x - y), the second-named author has

proved that T maps HKP into itself provided V.P(0) = 0. We omit it here.
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