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INVARIANT SUBSPACES FOR POSITIVE OPERATORS
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(Communicated by Palle E. T. Jorgensen)

Abstract. Recently we established several invariant subspace theorems for op-

erators acting on an lp -space. In this note we extend these results from opera-

tors acting on an /p-space to operators acting on any Banach space with a (not

necessarily unconditional) Schauder basis. For instance, it is shown that if a

continuous quasinilpotent operator on a Banach space is positive with respect

to the closed cone generated by a basis, then the operator has a nontrivial closed

invariant subspace.

1. Preliminaries

A subset C of a (real or complex) vector space X is said to be a cone

whenever C + C Ç C, aC C C for each real a > 0, and C n (-C) = {0} .
Every cone C determines a partial order < on X by letting y < x whenever

x - y e C. The notation x > y is, of course, equivalent to y < x . Thus, the
cone satisfies C = {x e X : x > 0} . The elements of C are known as positive
vectors. An ordered vector space is a vector space equipped with a cone C.

For a detailed account about cones and partially ordered vector spaces, we refer

the reader to [4].
In this note the word "operator" will be synonymous with "linear operator".

An operator T: X —> X on an ordered vector space is said to be positive (in
symbols T > 0 or 0 < T) if Tx > 0 for each x > 0. For a positive operator
T, it follows that Ty < Tx whenever y < x holds. For operators, the notation

T > S means T - S > 0 or equivalently Tx > Sx for each x > 0.

Recall that a sequence {xn} in a Banach space X is called a Schauder basis

(or simply a basis) of X if for every x e X there exists a unique sequence

of scalars {a„} such that x = 2^£ti anXn • Every basis {xn} gives rise to a

natural closed cone C defined by

C = <x = ^2 a"xn '• an > 0 for each n = 1, 2,... > .

The cone C will be referred to as the closed cone generated by the basis {xn}.

For an extensive discussion concerning the cone generated by a basis see [5].
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Associated with every basis is the standard sequence of "coefficient function-

als". Let {xn} be a basis of a Banach space X . Then the linear functional /„

defined by
oo

fn(x) = an    for each -* = E a'x'

i=l

is a continuous linear functional on X. Observe that each /„ is also automati-

cally positive with respect to the closed cone generated by the basis {xn} . More-

over, the sequence of continuous linear functional {/„} satisfies fn(xm) = ônm.

An operator T: X —> X on a Banach space with a basis {xn} is said to

be positive (with respect to this basis) if T(C) ç C, where C is the closed

cone generated by {xn} . Now fix a basis {xn} for a Banach space X. Then

every operator T: X ^ X can be identified in the usual manner with an infinite

matrix [tjj]. In this context, we can also say that an infinite matrix [t¡f\ defines

an operator on X. Note that an operator T: X —> X with matrix [/,;] is a

positive operator if and only if fy > 0 holds for each pair (/, j). If the

basis {jc„} is also unconditional, then every positive operator is automatically

continuous; see [1, Corollary 2.5, p. 4] or [3, Theorem 12.3, p. 175].

2. Invariant subspaces

In this section, we shall extend our invariant subspace results for lp -spaces to

operators acting on a Banach space with a basis. If a basis is specified, then all

notions of positivity will always be with respect to the closed cone generated by

this basis. As we shall show, the order structure of a Banach space determined

by a basis implies some interesting consequences.

Recall that a continuous operator T: X —> X on a Banach space is said

to be quasinilpotent if its spectral radius is zero. It is well known that T is
quasinilpotent if and only if lim„_00 ||7,".xi|1/'1 = 0 for each x e X.

Definition 2.1 ([2]). A continuous operator T: X —► X on a Banach space is

called quasinilpotent at a point xo whenever lim„_oo ||r".xn||1/n = 0.

A simple example of a one-to-one positive operator on /. that is quasinilpo-

tent at a positive vector but is not a quasinilpotent operator can be found in

[2]. We are now ready to show that on a Banach space with a basis any positive

operator that commutes with a positive quasinilpotent operator has a nontrivial

closed invariant subspace.

Theorem 2.2. Let X be a Banach space with a basis, and let T: X —* X be a

continuous positive operator. If T commutes with a nonzero positive operator

that is quasinilpotent at a nonzero positive vector, then T has a nontrivial closed

invariant subspace.

Proof. Let {x„} be a basis of the Banach space X, and let {/„} be the sequence

of coefficient functionals associated with the basis {x„}.

Assume that the nonzero positive operator A : X —> X satisfies TA = AT and

is quasinilpotent at some nonzero positive vector yo , i.e., lim,,-.,-*, ̂ "yoll1^ =

0. If Ayo = 0, then the kernel of A is a nontrivial closed subspace that

is invariant under T. Thus, we can suppose that Ayo is nonzero. By an

appropriate scaling of yo , we can assume that 0 < xk < yo and Axk ^ 0 for
some k.
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Now let P: X —> X denote the continuous projection onto the vector sub-

space generated by xk defined by P(x) = fk(x)xk . Clearly, 0 < Px < x holds
for each 0 < x e X. We claim that

(*) PTmAxk = 0

for each m > 0. To see this, fix m > 0 and let PTmAxk = axk for some

nonnegative scalar a > 0. Since P is a positive operator and the composition

of positive operators is a positive operator, it follows that

0 < anxk = (PTmA)nxk < (TmA)nxk = TmnAnxk < TmnAny0 ■

Since fk is a positive linear functional, the above inequality yields

0<an = fk(anxk)<fk(TmnAnyo).

Consequently, 0 < a" < \\fk\\ \\T\\mn • \\Atty0\\, and so

o < « < tlA!i1/wll^ir * M^oll1/"-

From lim„_00 ||^"yo||1/n = 0, we see that a = 0, and thus condition (*) must

hold.
Now consider the subspace Y generated by {TmAxk: m = 0, 1, ...}.

Clearly, Y is invariant under T, and since 0 ^ Axk e Y, we see that Y -^ {0} .

Also, for each y e Y, it follows from (*) that

fk(y) = fk(Py) = o,

and consequently fk(y) = 0 for all y e Y. The latter shows that y is a
nontrivial closed vector subspace of X that is invariant under the operator T,

and the proof is complete.   D

Corollary 2.3. Let X be a Banach space with a basis. If T: X —> X is a contin-

uous quasinilpotent positive operator, then T has a nontrivial closed invariant
subspace.

One can add arbitrary weights to the matrix representing a quasinilpotent
positive operator and still be guaranteed that a nontrivial closed invariant sub-

space exists.

Theorem 2.4. Let X be a Banach space with a basis. Assume that a positive

matrix A = [a¡j] defines a continuous operator on X that is quasinilpotent at a

nonzero positive vector. If for a double sequence {b¡j} of complex numbers the

weighted matrix B = [b¡ja¡j] defines a continuous operator B on X, then the
operator B has a nontrivial closed invariant subspace.

Proof. Let {x„} be a basis of the Banach space X, and let {/„} be the sequence
of coefficient functionals associated with the basis {x„} . Assume that the pos-

itive operator A = [a¡j] satisfies lim„_00 IM^yoll1^" = 0 for some nonzero

positive vector yo # 0. An appropriate scaling of yo shows that there exists

some k satisfying 0 < xk < yo. If Axk = 0, then an easy argument shows that
Bxk = 0, and thus the kernel of B is a nontrivial closed invariant subspace

(here we assume, of course, that B ^ 0). Thus, we can suppose that Axk is

nonzero.
Now let P: X —» X denote the positive projection defined by P(x) =

fk(x)xk . Then arguing as in the proof of Theorem 2.2, we can establish that
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PAmxk = 0 for each m > 1. In particular, we have fk(Amxk) = 0 for

each m > 1. Consequently, for each m > 1 and for each positive operator
S: X -> X satisfying 0 < S < Am we have

(**) 0<fk(Sxk)<fk(Amxk) = 0.

Next, consider the vector subspace Y generated by the set

{Sxk: 3S such that 0 < S < Am for some m > 1}.

Clearly, Y is invariant under each operator R that satisfies 0 < R < A . Also,

from (**), it follows that

fk(y) = o

for all y e Y. The latter shows that F is a nontrivial closed vector subspace

of X that is invariant under each operator R : X —> X satisfying 0 < R < A .

Next, consider the operator A¿j defined by A¡j(Xj) = a¡jXj and Aij(xm) = 0

for m / j. Since the operator satisfies 0 < A¿j < A, it follows that Y is

invariant under each of the operator A¡j. Therefore, the vector subspace Y is

invariant under the operators

;=1 7=1

However, the sequence of operators {Bn} converges in the strong operator

topology to B. Therefore, B(Y) c Y holds, and thus the operator B has a

nontrivial closed invariant subspace.   D

Corollary 2.5. Let X be a Banach space with a basis. Assume that a positive

matrix A = [a¡j] defines a continuous operator on X which is quasinilpotent at

a nonzero positive vector. If a continuous operator T: X —> X is defined by a
matrix T = [t¿j] satisfying t¡j = 0 whenever a¡j = 0, then the operator T has

a nontrivial closed invariant subspace.

We conclude with two remarks.

( 1 ) Consider a quasinilpotent operator on a Banach space with a basis. Sup-

pose the operator is not positive with respect to this basis. At first glance, it

appears that our invariant subspace theorems do not apply. However, if one

considers a change of basis, then the operator might become positive with re-

spect to the new basis, and therefore, it would have a nontrivial closed invariant
subspace. It would be interesting to find out when a given quasinilpotent oper-

ator on a Hubert space can be made positive with respect to some basis.

(2) It is well known that if a Banach space X has an unconditional basis, then

(up to an equivalent norm) A' is a discrete Banach lattice. Therefore, some of

the results obtained in [2] are indeed special cases of the results obtained here.
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