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PORTRAITS OF FRAMES

AKRAM ALDROUBI

(Communicated by Palle E. T. Jorgensen)

Abstract. We introduce two methods for generating frames of a Hubert space
&. The first method uses bounded operators on ^ . The other method uses

bounded linear operators on 1% to generate frames of %? . We characterize

all the mappings that transform frames into other frames. We also show how

to construct all frames of a given Hubert space &, starting from any given

one. We illustrate the results by giving some examples from multiresolution

and wavelet theory.

1. Introduction

A frame of a Hubert space %? is a sequence {(f>n}nez of vectors such that
for any vector ve/

(1) A\\v\\2r<Yl\(v><t>n)*\2<B\\v\\}r,
n€Z

where the frame bounds A and B are positive constants. This notion has been
introduced by R. J. Duffin and A. C. Schaeffer in the context of nonharmonic
Fourier series [10]. It is the generalization of the concept of orthnormal sets
in Hubert spaces. Specifically, if {<j>n}n€Z is a frame of %?, then any vector
v € %? can be represented as [10]

(2) V = Y,{S-XV,4>n)^<t>n,
n€Z

where S~x is the inverse of the selfadjoint operator S on ßT, defined by

(3) Su:=¿^(u,(¡)n)<r(j>n.
nez

o

Identity (2) can also be written in terms of the dual frame {<j>n = S~x4>n}nez

[10]:
0

(4) v = 2^(v , <j>n)jr<t>n.
n€Z
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Thus, any unconditional basis of %? is also a frame of ¡ff, but the converse is

not true [5, 9].
In this paper, we characterize the frame-preserving mappings that transform

frames of %? into other frames of %?. In §2, we give the necessary and suf-

ficient conditions satisfied by the frame-preserving operators on ^. We also

characterize the operators that generate frames of %fx c %?. In §3, we describe
the class of operators on l2 that generates all the frames of a Hubert space fff.
These operators on l2 relate any two frames of ^. The results can be used to

obtain a general method for constructing frames with prescribed properties. In

particular, we apply the results to affine frames and give some examples from

multiresolution and wavelet theory [12].

2. Mapping on %? for the construction of frames

2.1. Construction of frames of %?. Starting from a frame {<f>n}nez C %?, we

wish to find methods to obtain other frames of %f. Such methods would allow

the construction of frames with some prescribed properties that are suited for

specific applications. One approach is to construct a sequence 6„ = T<f>„ , where

T is a bounded linear operator on ¿f. If the range of T is not dense in %?,

then we can find a nonzero vector w which is orthogonal to the range of T :

w £ Clos(Ran(T))± . Clearly, w cannot be a linear combination of {0„}„eZ .

Thus, for {6n}nez to be a frame, it is necessary for the range of T to be dense

in %?. However, this condition is not sufficient. A necessary and sufficient

condition for {8„ = T4>„}„&z to be a frame is that the adjoint operator T* be

coercive, as in the following theorem.

Theorem 1. Let {4>n}nez be a frame of %* with frame bounds 0 < A < B.

If T is a bounded linear operator from ^ into ffî, then {6„ = T(f>n}n€z is

a frame for 3? if and only if there exists a positive constant y such that the
adjoint operator T* satisfies

(5) WT'vWJy^yWvWJr.
Remark. Condition (5) implies that T* is injective; i.e., the null space of T*

consists of the zero vector: null(T*) = {0}. Thus, the range of T is dense

in X. It should also be noted that positive selfadjoint operators always take

frames of ^ into other frames.

Proof. Sufficiency. We use ( 1 ) with the frame bound A and the property of the

adjoint to obtain that

yAWvWJr < AWrvWJr <^\(v, T<pn)^\2 = £ \(T*v , <j>n)x\2.
nez neZ

A similar estimate with the frame bound B yields

£ |(t;, T<pn)A2 = E \(T*V > ̂ )^\2 < B\\T*v\\%, < B\\T*||2||ü|ß,,
nez nez

which completes the "if part of the proof.

Necessity. We assume that {6n = T4>n}nez is a frame of 2? with frame

bounds 0 < a < b so that

(6) aWvWJr < E \(v , T<pn)^\2 < 6||i;||jL.
nez
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Using the upper frame bound B of {4>n}nez and the left inequality of (6), we

obtain

(7) a\\v\\%, <zZ\(v, T<pn)^\2 = £ \(T*v, <pn)^\2 < B\\rv\\\,,
nez nez

from which (5) follows with y = a/B .   D

2.2. Construction of frames on subspaces %fx c %?. Using continuous linear

operators on M?, a construction similar to the previous one can be used to

create frames of subspaces %{ c %?. We have the following result:

Theorem 2. Let %fx c_ %? be a closed subspace, and let {4>n}nez be a frame of

ß?'. IfT is a bounded linear operator from ß? into ß?x, then {d„ - T<j)n}n£z

is a frame of ß?x if and only if the restriction T*, of T* to ß?x, is coercive, i.e.,
there exists a positive constant y such that

(8) Wv\^> yHJL,    \lv£^x.

If the operator T = P in Theorem 2 is an orthogonal projection from ß?

into %x. then P* = P and \\Pv{{%, = ||v|||, for all v £%?x. Thus, from the

previous theorem, we immediately get that {6„ = P<t>n}nez is a frame of %?x.

To obtain a dual frame, we simply write v £ %fx in terms of the frame {<j)n}nez

of %* and use the properties of the projection operator P to get

o _^ o _s o

V =PV= 22(V , <t>n)jf<t>n = ¿¿(Pv,(l)n)^n = ¿¿(v , P(f>n)%>P<t>n-
nez nez neZ

o o

Thus, {8n = PQnSnez and {6„ = P<t>n}nez are dual frames in %?x, and any

vector dé^ can be written in terms of this pair of dual frames as

(9) v = Y,(v,en)jren = Y,(v,ön)/en.
nez nez

Thus we have proven:

Theorem 3. If %[ c %? is a closed subspace of %f and if P is the orthogonal
o o

projection on %?x, then {6„ = P(f>n}nez and {6„ = P(f>n}nez are dual frames of

%?x. Moreover, the frame bounds A and B of {<t>n}nez are also frame bounds

for {6n}nez ■

Thus, starting from an orthogonal basis of ^, we can construct frames of

%?x that are tight (i.e., A = B). This fact enables the construction of shift-

invariant tight frames. It also allows the construction of frame multiresolution

approximations (FMRA) [7] that are tight (cf. §4.1).

3. Mappings on l2 for the construction of frames of %f

Let U be a bounded linear operator on l2, and let the sequence 0 =

(...,(f)n-X,<f>n,<f>n+x, ...) be a frame of ßf. We can use U to construct the

sequence 0 = f/O, defined by 6 = (... , #„_!, 6„ , dn+x, ...) and

(io) en = zZu»J<l>j'
J€Z



1664 AKRAM ALDROUBI

where u,; = (Ue¡, e¡)¡2 and e¡ £ l2 is the canonical basis vector (i.e., e¡(i) = 1,

e¡(j) = 0, / t¿ j). Since {<¡>n}nez is a frame of ß? with bounds ^ and B,
and since {/ is a bounded operator, the vectors 8n are well defined, and we

have

WOnWJr^BWUW2.
In general, {6„}neZ does not constitute a frame of ß^ (e.g., C/ = 0). However,

under appropriate conditions on U, the sequence 0 = (..., #„_■, 0„, 0„+i, ... )
is a frame of ß?. In order to characterize the operators that transform frames
of %f into other frames of %?, we introduce the set of linear operators p(-, A)
from ß?, taking values in l2, defined by

(il)   p(v,A) = (...)(v,Xn-ï)#,(v,X„)r,{vtk„+l)jr,...),   Sv£ß?,

where A = (... , X„-X, Xn , Xn+\> • • • ) is any fixed sequence that forms a frame

of ß?. The operator p is a bounded linear operator from ß? into l2, since

(12) ||p(V,A)||/2 = EK^^>^l2<5A||i;||^,
nez

where BA is an upper frame bound for {Xn}nez ■ Now, the above derivations
allow us to characterize all the operators Ù on l2 that transform, by procedure

(10), frames of ß? into other frames of %f :

Theorem 4. Let {cpn}nez be a frame of ß?, and U be a bounded linear operator

from l2 into itself. Then {6„ = (i/0)„}„€Z is a frame of ß? if and only if there
exists a constant y > 0 such that for all x £ X = Range(p(-, $)) we have

(13) \\Ux\\\>y\\x\\2h,    Vx£X.

Proof. Sufficiency. From ( 1 ) and ( 11 ) we get

(i4) ^ll«ll^<llP(«,a»)||?2<fi||«ii^.

A simple computation yields

(15) p(v,e) = Up(v,<S>),

from which we obtain the two inequalities

(16) Ay\\v\\]r < y\\p(v , <t>)\\\ < \\Up(v , <D)|ß = \\p(v , 9)|ß ,

(17) \\p(v,Q)\\22 = \\Up{v,<l>)\\l < \\U\\ \\p(v,<ï>)\\l < B\\U\\ Mir.

Thus {9„}neZ is a frame for ß? with frame constants a = Ay and ¿> = \\U\\B .

Necessity. For the converse, we assume that {9n}nez is a frame. Thus, using
(15), we have

(18) am2* < \\p(v,e)\\l = \\Up(v,<*>)\\22 < bMJr,

where a > 0 and b > 0 are frame bounds of {0n}nez ■ We then use the left

inequality of (18) and the right inequality of (14) to obtain

(19) ±\\p(v, n\l < \\Up(v, <P)\\jt = \\p(v,0)\\l,

from which condition (13) follows with y = a/B .   O

The converse of Theorem 4 is also true; i.e., any two frames of %f are related

by an operator U on l2 that satisfies condition (13).  The following result,
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together with Theorem 4, gives a complete characterization of all the frames
of a given Hubert space ß?. It also gives a method for constructing frames
with some prescribed properties. As an illustration, in §4.2 we will use a simple
operator U to construct scaling functions and wavelets with some specifiable

properties. The converse of the theorem above states:

Theorem 5. If {On}nez and {<j>n}nez are frames for ß?, then there exists a

bounded linear operator U from l2 into itself such that

(20) 0 = C/<D.

Proof. Let X c l2 denote the range of p(-, 4>). Because {<t>n}nez is a frame,
the operator p(-, 4>) satisfies (14). The left inequality of (14) implies that
p(-, <P) is injective and bounded below by the positive constant A. Thus,

p(', <P) has an inverse p~x from X into X which is also bounded. From this

last assertion, we conclude that X is a closed subspace of l2. We define the

infinite matrix with entries u¡j by

(21) uu = {S-lei,<t>j)Jr,

where S~x is the positive operator defined by (2). We define an operator U

on X by assigning to every vector x £ X the sequence (Ux)¡ = ¿Zjuijxj-

Because {6„}nez is a frame of ß?, we can use (17) and (2) to obtain

(22) ll^l|22 = £l<0«,^|2<¿IMll.,
nez

where v £ ß? is such that x = p(v , <P), and where b is an upper frame bound

for {6n}„£z ■ Using Equations (14) and (22), we conclude that U is a bounded

linear mapping from X c l2 to l2 :

(23) \\Ux\\l < ^\\x\\j2.

Moreover, because of (2) and (21), we have 0 = UQ> by construction. Finally,

since X is closed, the operator U can be extended to all of l2 by requiring
Ux = 0 for all x £ Xs- (i.e., Xa- is the null space of U).   □

4. Examples from affine frames

There are many applications of affine frames to signal processing, image pro-

cessing, and numerical analysis [4, 6-8, 11, 13, 14, 16-18]. In this section, we

will illustrate the results of the previous sections by giving examples from affine
frames.

4.1. Tight shift-invariant frames and tight frame multiresolutions. Shift-

invariant frame multiresolutions (FMRA) were introduced by J. Benedetto and

S. Li [7]. A simple example of Theorem 3 in which a tight FMRA can be ob-
tained by orthogonal projection of a basis is given by the sine function. Specifi-

cally, {<(>„ = sinc(jc - «)}«ez is an orthogonal basis of the bandlimited function

space Pi/2 with bandwidth W = [-\, j]. The space Bx^ of bandlimited

functions with bandwidth in W - [-\ , \] is included in Bx/2. By orthogo-

nal projection of {<t>n}nez on 51/4 , we obtain the set {8n = sinc(f - f )}nez ,
which, by Theorem 3, is a tight frame of BX/4 with a redundancy factor r = 2.



1666 AKRAM ALDROUBI

This corresponds to oversampling Bx/4 at twice the Nyquist rate. In fact, the

sets {<j>n,j = sinc(2~-'x - j)}njez are tight frames for the multiresolution of

bandlimited functions (cf. [1, 2]).

4.2. Construction of scaling functions and wavelets with specifiable properties.   A

simple example of operator U satisfying the condition of Theorem 4 is obtained

as follows: if the Fourier transform q(f) of a real sequence q(k) is such that

ess sup \q(f)\ < oo, then the operator Uqx := q * x (obtained by convolving
q with x) is bounded on l2 [1, 3], and U* = Uqv , where qy(k) = q(-k).

Moreover, if ess inf |<7(/)| > 0, then Uq satisfies Theorem 4. Thus, we can use

such operators to generate frames (cf. (10)) of a given Hilbert space. However,

these types of operators cannot transform a Riesz basis into a redundant frame

(or vice versa). To do this, it is necessary to use other types of operators that

satisfy Theorem 4.
Using the convolution operators described above, it is possible to construct

scaling functions and wavelets with desired properties. In particular, given

the orthonormal basis {<p0(x - n)}nez of the space Vo that belongs to the

multiresolution Vj [13], we can obtain the interpolating basis {q>i(x - n)}„ez

by using the sequence q¡ defined by its Fourier transform q¡(f)

(24) Hf)=(zZ^(f-i))     •

The type of operators Uq described above together with two other types of
operations were used to find a general method to construct scaling and wavelet

functions with specifiable properties [2, 3].

4.3. Nonorthogonal projections. Another example of Theorem 1 is given by

nonorthogonal projectors. In particular, we consider the projection Px±2 on

the vector space Vx = {¿Zn€zc(n)Xx(x - n)} in the direction orthogonal to

V2 = {¿Zn€Z c(n)X2(x - n)} . The spaces V¡ are well defined, closed subspaces

of L2 if there exists two positive constants 0 < m < M such that the Fourier

transforms h(f) of X¡(x)   (i — 1, 2) satisfy [1]

m< ¿^\Xi.(f+n)\2<M   a.e.
nez

The projection Px±2g = ¿Zi^zcg(i)^i(x ~ 0 0I* a function g(x) £ L2 must

satisfy

(25) ((Px±2g-g)(x),X2(x-l))Ll = 0,    V/ GZ.

Equation (25) is equivalent to solving the discrete convolution equation for the

unknown sequence cg :

(26) cg*ax2 = b,

where ax2(k) = (Àx(x), À2(x - k))Ll is the sampled cross-correlation between

Ax and X2, and where b(k) - (g(x), X2(x - k))i2. Equation (26) is the basis
of a new technique for sampling signals with nonideal acquisition devices [15].

From Equation (26), an argument similar to the one in [1, Theorem 2] gives

the following result:
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Theorem 6. The projector Px±2 is well defined if and only if there exist two

positive constants 0 < m' < M' such that the Fourier transform of the cross-

correlation âx2 = ¿2„£z ^i (/ + n)^2(f + n) satisfies

(27) rri < ¿Zh(f + n)X2(f+n)
nez

<M'.

where X2(f) is the complex conjugate of l2(f).

From (25) and (26), it follows that Px*±2 = P2±x. Thus, \\Px*±2g\\L2 > \\g\k2

for all g £ Vx. In fact, we have that llPj^Slk > ^_1lle?lk2 • Thus, by
Theorem 2, such projectors can be used to generate frames of Vx from frames

or bases of L2.
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