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ON THE COFINALITY OF THE SMALLEST COVERING

OF THE REAL LINE BY MEAGER SETS II

TOMEK BARTOSZYÑSKI AND HAIM JUDAH

(Communicated by Andreas R. Blass)

Abstract. We study the ideal of meager sets and related ideals.

1. Introduction

This paper continues the line of investigation started in [4] and strengthens

the main result from [9].

Definition 1.1. Suppose that ,/ is a cr-ideal of subsets of 2W. Let

add(/') = min{|jar*|:jjr* çf & (Js/ £ f}

and

cov(f) = n\m{\$?\:tf cf&. (Jj/ = 20)}.

Let J( and JV denote the ideals of meager and measure zero sets respec-
tively. The goal of this paper is to study the cofinality of the cardinal cov(^).

Recall that for a set 77 ç 2W x 2W and x, y e 2W , (H)x = {y e 2W : (x, y) £

77} and (77)' = {x £ 2W : (x, y) £ 77} .
The following definition is due to Reclaw ([9]).

Definition 1.2. A set X ç 2W is an R set if for every Borel set 77 ç 2W x 2m ,

such that (H)x £ Jf for all x e 2W ,

U (#)* * 2<°-
x&X

We will use the following representation theorem for Borel sets with meager

sections:

Lemma 1.3 (Fremlin [5]). Suppose that H ç 2m x 2W is a Borel set such that

(77) * is meager for all x. Then there exists a sequence of Borel sets {Gn : n £

ft)}ç2Bx 2W such that
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(1) (Gn)x is a closed nowhere dense set for all x £ 2W,

(2) HC[)newGn.

Proof. For completeness we present a sketch of the proof here.

Let & be the family of Borel subsets G of 2W x 2W such that (G)x is open

for every x £ 2W .

Let <f be the a-ideal of subsets of the plane generated by Borel sets F such
that (F)x is closed nowhere dense for all x.

Consider the family I of subsets E of the plane such that there are two
Borel sets G, 77 of which G £ ÏÏ, H £ f, and Tí AG ç 77. Clearly I
contains all open sets and is closed under countable unions. We want to show

that X is also closed under complements.

For a set G £ & let

G' = {(x,y):y is an interior point of 2m \ (G)x}.

Note that (2M x 2ffl) \ (G U (?') is a set whose vertical sections are closed

and nowhere dense. It follows that in order to show that Z is closed under

complements it is enough to check that G' is a Borel set.
Let {Un : n £ co} be a recursive enumeration of a countable base for the

family of open subsets of 2m .

Note that the following are equivalent:

(1) (x,y)£G',

(2) In (yeí/„&Vz (z ¿ Un V (x,z)0G)) (n¡),

(3) In (yeU„&Vm (U„ n Um = 0 V 3z (z £ Um (x, z) ¿ G)j)  (E|).

That shows that G' has a A¡ definition which means that it is a Borel set.

So Z is a cr-algebra which contains every Borel set. Now if Tí is a Borel set
with meager vertical sections, then associated G must be empty. In particular,

E£f.    D

2.   R  SETS AND THE COFINALITY OF COV(^#)

In this section we will study R sets and show that R sets form an ideal

closely related to the ideal of meager sets.

Definition 2.1. A set X ç 2e0 has Rothberger's property (is a C" set) if for

every sequence of open covers of X, {%?n : n £ co}, there exists a sequence

{U„:n£co} with U„ £ *§n such that X ç {Jneœ U„ .

Rothberger's property is the topological version of strong measure zero. We

have the following:

Theorem 2.2 (Fremlin, Miller [7]). The following are equivalent:

( 1 )  X ç 2e" has Rothberger 's property,

(2)  X has strong measure zero with respect to every metric which gives X

the same topology.    D

Let C" be the collection of subsets of 2W which have Rothberger's property.

It is easy to see that C" is a cr-ideal.
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Theorem 2.3. The following conditions are equivalent:

(1) X is an R set,
(2) for every Borel function x ~~> fx £ co0) there exists a function g £ co™

such that
Vx € X 3°°n fx(n) = g(n).

(3) Every Borel image of X has Rothberger's property.

Proof. (1) —> (2) Suppose that x -^ fx £ a>0) is a Borel mapping. Let 77 =

{(x, h) £ X x co03 : V°°« h(n) ¿ fx(n)} . Clearly 77 is a Borel set with all (H)x
meager, and if g £ \JX£x(H)x >tnen g has required properties.

(2) -» (3) Suppose that Y is a Borel image of X. Let {^n : n £ co} be a

sequence of open covers of Y. Suppose that 2?„ = {G% : m £ co} for n £ co.

For y £ Y let p £ cow be the function defined as

P(n) = min{m : y £ G™} for n £ co.

Mapping y ~y p is Borel. Thus there exists a function f £cow such that

Vy e T 3°°« P(n) = /(«).

Clearly the sequence {G{(n) : n £ co} has required properties.

(3) -> (2) Suppose that x ~> fx £ cow is a Borel mapping. Clearly Y =

{fx : x £ X} has Rothberger's property in of. Consider the families

&n = {G™ : m £ co} where G™ = {A £ cow : h(n) = m}.

The selector chosen for this sequence of coverings immediately gives us the

function which meets every fx in at least one point.

To get the function we are looking for we have to split co into infinitely many

pieces and apply the above construction to each one of them.

(2) —y (1) We will need several lemmas. To avoid repetitions let us define:

Definition 2.4. Suppose that X ç 2W. Z is nice if for every Borel function

x ~+ fx £co'° there exists a function g £ cow such that

Vx £ X 3°°n fx(n) = g(n).

We will show first that:

Lemma 2.5. Suppose that X is nice. Then for every Borel function x ~+ (Yx, fx)
£ [co]m x cow there exists g £ com such that

Vx e X 3°°« e Yx fx(n) = g(n).

Proof. Suppose that a Borel mapping x ~~> (Yx, fx) is given. Let yx denote

the «-th element of Yx for x £ X. For every x £ X define a function hx as

follows:
hx(n) = fx\{yx,yx,...,yx} for n £ co.

Since the mapping x ~* hx is Borel and functions hx can be coded as elements

of cow, there is a function h such that

Vx € X 3°°n hx(n) = h(n).

Without loss of generality we can assume that h(n) is a function from an

(n + 1)-element subset of co into co.
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Define g £ coa in the following way. Choose inductively

z„ edom(A(«))\{z0, *i,... , z„-i} for n £ co.

Let g be any function such that g(z„) = h(n)(zn) for n £ co.

We show that the function g has the required properties.   Suppose that
x £ X. Notice that the equality hx(n) = h(n) implies that

fx(zn) = g(zn) and z„ £ Yx.

That finishes the proof since hx(n) = h(n) for infinitely many n £ co.   D

Lemma 2.6. Suppose that X is nice. Then for every Borel mapping x ~» fx £

of there exists an increasing sequence {nk : k £ co} such that

Vx£X3°°kfx(nk)<nk+l.

Proof Suppose that the lemma is not true and let x ~-> fx be the witness.

Without loss of generality we can assume that fx is increasing for all x £ X.

To get a contradiction we will define a Borel mapping x ~» gx £ of such that

{gx : x £ X} is a dominating family. That will contradict the assumption that

X is nice.
Define

gx - ma\{fx o fx o • • • o fx(i) : i, j <n} for n £ co.

j times

Suppose that g £cow is an increasing function. By the assumption there exist

x £ X and ko such that

Vk>kofx(g(k))>g(k+l).

In particular,

V/c > g(lco) g(k) < gx(k)

which finishes the proof.   D

Lemma 2.7. Suppose that X is nice. Then for every Borel mapping x ~* Yx £

[co]" there exists a set Y — {un : n £ co} such that

(1) u„+i >u„ + 2 for all n,
(2) Vx£X |Tny*| = Ko.

Proof. By applying Lemma 2.6, we can find an increasing function f £ of

such that

Vx€ X \Yx\{f(n):n£co}\ = Hö-

het A0 = {2k : k £ co} and A\ = {2k + I : k £ co}. Define Borel mapping
x ~» (Zx, gx) £ [co]w x 2W as follows: Zx = dom(g*) and for n £ co,

'0   ifYxn(f(n),f(n+l))nAo¿1>,

= < l   if Yxn (f(n), /(n+i))n^, #0,

undefined otherwise.

Note that the first two conditions of this definition are not exclusive. We use

either value when that happens.
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By Lemma 2.7, there exists a function h £ 2W such that

Vx € X 3°°n e Zx h(n) = gx(n).

Define

Y= (J ((/(«) ,f(n + l))nAm.
nÇ.w

It is clear that Y has required properties.   D

We now return to the proof that (2) implies (1). Let H C20) x2(° be a

Borel set with all fibers (77)* meager. Using 1.3, find Borel sets {F" : n £ co}

such that 77 ç \Jn€lüF" and (F")x is closed nowhere dense for x £ 2a,

n £co.

For x £ X, define

sx = min{s £ 2<w : V? £ 2<n V/ < n [t~s] n (Fj)x = 0} for n £ co

(where the minimum is taken with respect to some enumeration of 2<ca).

By Lemma 2.6, there exists a sequence {nk : k £ co} such that

(1) n/t+i > Ew)«¡. fora11 k>
(2) Vx£X3°°n\sxk\<nk+l.

For x £ X let Zx = {k : \sxk\ < nk+i}. By Lemma 2.5, there exists a

sequence (sk : k £ co) such that

Vx € X 3°°k £ Zx sxk = sk.

Without loss of generality we can assume that \sk\ < nk+l for all k. Define
mapping x ~-> Yx by

Yx = {k£Zx:sk=sxk}.

Let Y be a set obtained by applying Lemma 2.7 to this family. Define

where /n < h < l2 < • • •   is the increasing enumeration of Y.  Note that if
lk+i £ Y n Yx , then

\sCs,r ..rs,k\<J2 nh+i < n¡k+2 < n¡k+l
j<ik

and

In other words, [s^Si^..."s¡M] n (F')x = 0 for i < lk+i .  But that clearly

implies that z 0 [}new(F")x , which finishes the proof.   D

As a corollary we get the following:

Theorem 2.8 (Reclaw [9]). Tsvery Luzin set is an R set.

Proof. It is well known that every Borel image of a Luzin set has Rothberger's

property.   D

Theorem 2.9. cf (cov(^f)) > aóó(R) > add(C") > add(yT).

Proof. We will start with the following lemma.
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Lemma 2.10. There exists a Borel set 77 ç 2W x 2e0 with such that all (H)x are

meager and for every set A £ Jf there exists x £ 2W such that A ç (H)x .

Proof. For z £2W and f £of define a set

B(z ,f) = {t€2°>: V°°k 3; £ \f(n), f(n + 1)) t(j) * z(j)},

where /(") = ELo/M-
It is well known (see [2]) that the family {7?(z, f) : z £ 2a, f £ cow} is a basis

of Jt.
Fix a Borel surjection / ~> (zt, ft) £ 2W x of and let 77 be a set such that

(77), = B(zt, ft) for all t £ 2W .   a

Suppose that stf ç Jf is a family of meager sets of size co\(Jf) which

covers 2W. For F £ s/ let xF £ 2W be such that F ç (H)Xf . Suppose that

cf(cov(^#)) = k . It follows that X - {xf : F £ s/} is the union of k many
sets Xa of size smaller than cov(^#). Clearly each set Xa £ R and X £ R.

Thus k > add(7\) which proves the first inequality.

The second inequality follows immediately from Theorem 2.3.

The third inequality is due to Carlson. We will prove it here for completeness.

We will use the following fact (see [2] or [1]):

Theorem 2.11. add(yT) is the smallest size of the family F ç of such that
there is no function S : co —► [co]<b) with \S(n)\ < n for all n, such that

V/eF V°°« f(n) £ S(n).    D

Suppose that {Xa : a <k < add(yT)} is a family of C" sets. We will show

that X = \Ja<K Xa is a C" set.

Let {&n '■ n £ co} be a sequence of open coverings of X. Assume that

&n = {U„\ : m £ co} for n £ co. Let r(n) = 1 + 2 + • • • + (n - 1). Define for

n £ co the family

~ r~ ï r("+1)

&„ = {Us" : s £ «['(">•'("+'»} , where Us" =   f|   UJ{jy
j=r(n)

Note that &„ is also a cover of X . By the assumption, for every a < k there

exists a function fa such that {Ù},n) : n £ co} is a covering of Xa .

Since k < aóó(J/"), by Theorem 2.11, there exists a function S : co —► co<w

such that

Va < k V°°« fa(n) £ S(n).

Without loss of generality we can assume that S(n) consists of at most n

sequences of length n. Let / be a function which agrees at least once on
the «-element interval [r(n), r(n + 1)) with each of the n functions in S(n).

Clearly {Uf,n) : n £ co} is the covering of X we were looking for.    D

Remarks and questions. (1) Is cf(cov(^#))  > add(^#)?   In other words, is

cf(cov(„#)) > b?
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(2) The first inequality in Theorem 2.9 also holds when we replace category

by measure. Unfortunately we do not know if R sets defined for measure form
an ideal. (For more see [8] and [3].)

(3) It is consistent that add(Jt) > add(C") ([6]).
(4) Is it consistent that add(C") > add(./f )? add(i?) > addiyf )?
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