
proceedings of the
american mathematical society
Volume 123, Number 6, June 1995

THE HAUSDORFF DIMENSION OF GRAPHS
OF DENSITY CONTINUOUS FUNCTIONS II

ZOLTÁN BUCZOLICH AND KRZYSZTOF OSTASZEWSKI

(Communicated by Andrew Bruckner)

Abstract. In this paper we complete the proof of the fact that the Hausdorff di-

mensions of graphs of density continuous functions vary continuously between

one and two. This result was announced in our previous paper, but the proof

there contained a gap and the construction given there should also be slightly

modified. This correction is done in this paper.

Introduction

B. Kirchheim [K] observed and pointed out to the authors that in the proof
of Theorem 2 in [BO] there is a gap. That proof shows only that functions /,
defined in Theorem 2 of [BO], are measure preserving. This property is not

sufficient for density continuity. In fact, in Theorem 1 of this paper we show

that functions / in Theorem 2 of [BO] are not necessarily density continu-
ous. This will also illustrate that there are measure preserving but not density
continuous functions. On the other hand, by changing slightly the definition
of / one can obtain density continuous functions. This implies that the Haus-
dorff dimensions of graphs of density continuous functions /: [0, 1] —> R vary
continuously between one and two.

In this paper we shall use the notation of [BO]. Recall that a function /: R —>
R is density continuous if it is continuous with respect to the density topology
on both the domain and the range. Our work [BO] contains a construction

of functions done in a manner resembling the way the first coordinate of the
Peano area-filling curve is obtained. Those functions are claimed to be density
continuous.

Theorem 1. The functions f constructed in Theorem 2 o/[BO] are measure
preserving but not necessarily density continuous.

Proof. Assume that we use the construction of Theorem 2 of [BO, pp. 1040-
1041], with n = 3, m = 5 , and 1 = 2. Put ko = 0, and choose a sequence of
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integers k} > 2 for j = 1, 2, ...  such that

/A\ko+-+kj i

(1) (jj .5*ö+-+*>- <i

holds for all 7 = 1, 2, ... . Put si = ii = 3 . If 5;_i and tj-\ are given, let

1 1
*J - Sj-i + 3 (3. 5)Ao+...+fc;_1

and
1        1

0 - O-i + 3 3*o+...+*y_, •

Observe that f(Sj) = t¡. We define x and y in (0, 1) as x = lirn._00s/ and

y = lim,-,,-*, tj . It follows form the continuity of / that y = f(x). We also

put
1 1

Ij     \Sj     3(3-4-5)*»+"-+*>-«.(3-4)*>' Sj

and

JJ= [tJ~3(3.4)^-+kj'tj)-

Observe that / is linear on

[fj - 3 • ,3.5)k0+...+kj_l+i> *;J =>(/

with slope 5*»+-+*i-i+i. Hence it is easy to see that f(I¡) = Jj. Define

CXI

F = [0,l]\{Jjj

and E = f~x(F). We have y e F and x e E. Since /(//) = 7,, we also have

oo

En\Jlj = 0.

Then using the definition of the points tj and the facts

oo

(J77 = [0,1]VF,        Jj = [tj.x,tj]\F,
j=i

tj-tj-i > 0+i - Q _ 4*ö+-+*J

and
(y-i,)>/;+1-0_4^-H

17,1 17,1 5
one can easily see that y is a density point of F . Plainly,

oo

.   x-Sj = Y^(si+i-si)<2(sj+i-Sj).
i=j
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Using x e f~\F) and (1) from

^JÀ < 2 • SJ±AZ± = 2 » (i)^"'^ . 5^-V, < l
\h\ n       U/ V

it follows that x is not a density point of E. This implies that / is not density
continuous.

On p. 1041 of [BO] it is verified that for any measurable E c [0, 1], f~x (E)
has the same measure as E ; that is, / is measure preserving. This concludes

the proof of Theorem 1.

Theorem 2. The set of Hausdorff dimensions of graphs ofsurjective density con-

tinuous functions f:[0, 1] —> [0, 1] is dense in [1,2].

Proof. Let n > 3 be arbitrary, 1 < I < n, and m e N be odd. Assume that the

functions cßrm+j are defined as in [BO, pp. 1040-1041]. Denote by ex the line

segment connecting the points (0, 0) and (£, ¿), and denote by e2 the line

segment connecting the points (j¡, j¡) and (1, 1). Consider the invariant set

of the affine functions system cj>rm+j, where 1 < r < I — 1 and 1 < j < m . We

remark that here we do not use the functions c/>k for k = 1, ... , m . This is

the slight change in the construction of [BO]. The invariant set is not the graph

of a function defined on [0, 1]; however, it will become one if we add to it the

line segments ex and e2, and the countable collection of their images under
maps of the form </>,, o 0,-2 o • ■ • o cj>ÍN , where i¡ is an integer between m + 1 and

Im for each j = 1,2,..., N. Denote by / the function obtained above.

Denote f0(x) = x for x e [0, 1], and let fN: [0, 1] -> [0, 1], N e N, be
the function whose graph is the union of the images of the graph of f, under

the mappings 0,-, o 0¿2 o ■ • ■ o tf>ÍN , where ij is an integer between m + 1 and Im

for each j = 1,2, ... , N, and the union of ex, e2, and their images under

the maps of the form </>.-, o <fiÍ2 o • • • o tj)if/l , where 1 < N' < N and i¡ is an

integer between m + 1 and lm for each j = 2, ... , N'. It is easy to see

that the continuous functions /# converge uniformly to /, and hence / is
continuous.

Assume that [a, b] x [c, d] = <£,-, o tf>¡2 o ■ ■ ■ o <p¡N([0, 1] x [0, 1]), where ij

is an integer between m + 1 and Im for each j = 1,2, ... , N. Then it is

easy to see that b - a= l/(mn)N and d-c = l/nN. Put ipx : [0, 1] —> [a, b],

ipx (x) = (b - a)x + a and ip2 : [0, 1] —> [c, d], y/2(x) = (d - c)x + c. Observe

that f\[a,b] = ip2ofotp~x, where by f\[a, b] we denoted the restriction of

/ onto [a, b]. An argument like the one presented in [BO, p. 1041] can show

that / is measure preserving, i.e., for every measurable E c [0, 1] we have

\f-l(E)\ = \E\.
Assume now that E c [c, d] is measurable. Then \f~x(E) n [a, b]\ =

\(f\[a,b])-x(E)\ = Wxof-xw2-\E)\. Plainly, \y/2l(E)\ = \E\/(d - c), \f~x o

y/2~x(E)\ = \E\/(d-c), and finally \y/i of~x o ip2~x(E)\ = (b-a) • \E\/(d-c) =

\E\/mN . Therefore, we proved that

(2) \f-l(E)n[a,b]\ = j^\E\.

Denote by -F> the invariant set of the affine functions system tprm+j , 1 <

r < I - 1, 1 < j' < m, and by F2 the projection of Fx onto the x-axis.
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Assume that E c [0, 1] is measurable, yo is a point of density of E, and
xoef~x(y0).

If Xq £ F2, then it follows from the definition of / that there exits a 6 >

0 such that / is nonconstant and linear on the intervals (x0 - ô, xo] and

[xo, x0 + Ô). Therefore, Xo is a point of density of f~l(E).
Assume now that Xo e F2. Then there exists a sequence ix, i2,..., ín , •■■

such that (jgo , y0) = n~=i 0¿. °^°-0 ¿/„([0, 1] x [0, 1]), and iN is an
integer between m + 1 and Im for each nonnegative integer N. We also

choose a¡f, bn, Cf/, d^ such that

[aN, bN] x [cN, dN] = tpi-x o (ph o ■ ■ ■ o <pÍN([0, 1] x [0, 1]).

Since m < i^+x < Im <(n - l)m, we have

èjv - un   ,       bu - as
aN +-—, bN-—(3) x0 e

for N= 1,2,... .
Let e > 0. Since yo is a density point of E, we can choose an No such

that if y0 6 [q, w] c [c^ , rf^], then

(4) \[q,w]\E\<e-(w-q).

We obtain from (2) easily that

\[aN,bN]\rx(E)\<e(bN-aN)

holds for any N > N0. From (3) it follows that x0 is the open interval (apf, b^)

for any N, and hence we can find a r50 > 0 such that (xq - ô0, x0 + ô0) C

(aN0 ,bNo).

Assume that 0 < S < <50. Choose N > N0 such that (xq- ô, x0 + ô) c
[,3Ar,(V] and (xo-¿, xo + ¿) ?! [a^+i, (7^+1]. Using (3) with A^+l we obtain

/7at+1 -öat+1     ,               ¿>at+i -íJat+i
"JV+1 + -. UN+l-x0 e

This and (xo - ô, x0 + S) çt [aN+i, bN+i] imply S > (bN+i - aN+l)/n , that is,

bf/+i — cin+i < an > and hence

\(xo-Ô,x0 + S)\f-x(E)\<\[aN,bN]\f-1(E)\<e(bN-aN)

= enm(b^/+x - a^+x) < enm • nô.

Thus for every e > 0 there exists r50 such that for every 0 < ô < ôq we have

\(xo-ô,xo + ô)\f-x(E)\ _n2m

20 <     2   •

Therefore, x0 is a point of density of f~l(E). This concludes the proof of the

fact that / is density continuous.
The calculation of the Hausdorff dimension of / is similar to the one pre-

sented in [BO, p. 1042]. One obtains that the Hausdorff dimension of / equals

l        V^     log    n       ln(/_ !)   ,          lnm
log„ >    m10*™ " = —-.-' + :--¡-.

" ¿-^ Inn Inm + lnn
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It is also clear that

j^'^.neN. n>3, l</<«, / e n|

is dense in [0, 1]. This implies (cf. [BO]) that the set of Hausdorff dimensions

of graphs of the functions / is dense in [1, 2]. This completes the proof of
Theorem 2.

Note that Theorem 2 of this paper together with Corollary 2 of [BO] im-

ply that the set of the Hausdorff dimensions of graphs of density continuous
functions equals the entire interval [1, 2].
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