
proceedings of the
american mathematical society
Volume 123, Number 6, June 1995

Q(0 AND Q((i))-ADMISSIBILITY OF GROUPS OF ODD ORDER

BURTON FEIN AND MURRAY SCHACHER

(Communicated by Lance W. Small)

Abstract. Let Q(t) be the rational function field over the rationals, Q, let

Q((0) De tne Laurent series field over Q, and let 'S be a group of odd order.

We investigate the following question: does there exist a finite-dimensional

division algebra D central over Q(l) or Q((/)) which is a crossed product

for S ? If such a D exists, S is said to be Q(i)-admissible (respectively,

Q((/))-admissible). We prove that if 9 is Q((/))-admissible, then S is also

Q(i)-admissible; we also exhibit a Q(i)-admissible group which is not Q((r))-

admissible.

Let K bea field and let ^ be a finite group. & is said to be AT-admissible if

there exists a division algebra D, finite dimensional and central over K, which

is a crossed product for &. Equivalently, S? is AT-admissible if there exists a

division algebra D with center K having a maximal subfield L Galois over K

with Gal(L/Ä") = &. Admissibility questions for K = Q, the field of rational
numbers, have been studied extensively in the literature (e.g., [Sc] and [ S02 ]).

More recently, results have been obtained when K is an algebraic function

field over some field K0 ([FSS] and [FS]). In this paper we study admissibility
questions for groups of odd order when K is either the rational function field

Q(t) or the Laurent series field Q((t)). We show for such groups that Q((r))-

admissibility implies (Q(i)-admissibility but not conversely. We also construct

examples of groups of odd order which are Q((i))-admissible but which have

homomorphic images which are not Q((i))-admissible; by contrast, if K is
a number field, a homomorphic image of a /^-admissible group is necessarily

ÄT-admissible [Se, Corollary 2.3].
We fix below most of the basic terminology and notation that we will employ

throughout this paper. Let K be a field. By a AT-division algebra we mean a

division algebra having center K which is finite dimensional over K. We say

that A/K is central simple if A is a simple algebra with center K which is

finite dimensional over K . Suppose A/K is central simple. By Wedderburn's

Theorem, A = M„(D) where D is a .fif-division algebra; we refer to D as

the division algebra component of A . The Schur index of A, ind(A), equals
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i/[D : K]. If p is a prime, A can be uniquely expressed in the form A =

Ap ®k B where Ap/K and B/K are central simple, [A : K] is a power of p ,

and [B : K] is prime to p . The class of A in the Brauer group, Br(K), of K
will be denoted [A]. If a £ Br(K), we define the Schur index of a, ind(a),

to be ind(5) for any B/K central simple with a = [B]. The order of a in

Br(K) is denoted exp(a). We say that E/K is ,f-Galois if E D K is a finite
Galois extension of K with Gal(E/K) s &. Suppose that E/K is ,f-Galois

with & cyclic, generated by a. If b £ K*, we let (E/K, a, b) denote the

cyclic crossed product algebra generated over E by an element x with defining

relations xex~x = a(e) for all e £ E and x^ = b.

Now let L be an extension field of K and let a = [A] £ Br(K). We say

that L splits A (or that L splits [A] ) if [A ®K L] - 0 £ Bx(L) ; the subgroup
of Br(K) consisting of thoses classes split by L is the relative Brauer group,

Bt(L/K) , of L over K. If L is a finite extension of K, we denote the

corestriction homomorphism from Br(L) to Br(K) by cor£ .

Suppose D is a AT-division algebra and E/K is a finite extension of fields.

We will use freely the following two basic facts: if E splits D, then ind(£>)

divides [E : K] [P, Proposition I3.4(v)]; if [E : K] = ind(D), then E is a
maximal subfield of D if and only if E splits D [P, Corollary 13.3].

We assume that the reader is familiar with the basic results of Albert, Brauer,

Hasse, and Noether which classify division algebras over number fields K ; an

exposition of the relevant theory may be found, for example, in [P, Chapter

18]. We denote the Hasse invariant of a central simple A^-algebra A at a
prime n of K by inv^(^). The denominator of invn(A) (viewing inv„(^l)

as a fraction in lowest terms) will be referred to as the local index of A at

n ; the local index of A at n equals ind(^4 ®K Kn). We will freely use the

following standard results of this theory. Suppose A/K is central simple. Then

inv„(A) t¿ 0 for only finitely many primes n of K, say for {nx, ... , nn} ■ Yet
inv^) = Oi/bi where a¡, b,■ e Z, b,■ > 0, and (at, ¿>,) = 1. Then £,. | G Z

and ind(D) = exv(D) equals the least common multiple of the b¡ 's [P, Theorem

18.6 and Corollary 18.6]. In particular, if ind(^4) = pr where p is prime, there

must exist two primes n of K for which the local index of A at n equals pr.

If L is a finite extension of K and S is a prime of L extending a prime n of
K, then inv¿(^ ®K L) = [Ls : Kn] • inv„(A) [P, Lemma 18.4]. In particular, L
splits A if and only if, for every prime n of K and every extension â of n to

L, the local index of A at n divides [Ls : Kn] [P, Corollary 18.4b]. Finally,
suppose nx, ... , n„ is a set of primes of K and a¡/bj, i = 1,...,«, are

given which satisfy: a¡, b,■ £ Z, b, > 0, (a,-, 6,-) = 1, a,/^ = 1/2 if 7t, is real
infinite, a¡/bx — 0 if n¡ is complex infinite, and '$2l.^ £ Z. Then there exists

a unique ^-division algebra D such that inv„.(D) = a¡/bi for i = 1, ... , «

and inVj,(D) = 0 for all other primes y of K [P, Theorem 18.5].
We will need to use several results from the theory of division algebras over

complete fields; we refer the reader to [JW] and [Sei] as general references. We

briefly summarize the results that we will be using. Suppose that K is complete

with respect to a discrete rank-one valuation n . Let K be the residue field and

assume that K is perfect. If L is a finite extension of K, there exists a unique

unramified extension L of K of degree [L : K] whose residue field is L ; we

refer to L as the inertial lift of L. We call an element t £ K a uniformizing
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element if t generates the maximal ideal of the ring of ^-integers. Let D be
a ÄT-division algebra. The valuation on K extends uniquely to a valuation

on D. We let D denote the residue division algebra. If B is a ^-division

algebra, there is a unique if-division algebra D with [D : K] = [B : K] and

with D = B. We refer to D as the inertial lift of B. The existence of D

follows, for example, from [JW, Theorem 2.8]. We will make frequent use of

the following fundamental result:

Proposition 1. Let K be a field complete with respect to a discrete rank-one

valuation having a perfect residue field K. Let t £ K be a uniformizing element

and let a £ Br(K).

( 1 ) There exists a unique K-division algebra D, a unique cyclic extension

L of K, and a unique generator ö for Gal(L/K) such that a = [D ®K

(L/K, a, t)] ; here D is the inertial lift of D, L is the inertial lift of L,
and o is the generator corresponding to a in the canonical isomorphism

between Gal(L/K) and Gal(L/K).

Let D and L be as in (I).

(2) Let E be a finite extension of K and let E be the inertial lift of E.

Then E splits a if and only if E splits D and Ë D L.
(3) ind(a) = [L : K] ■ ind(D ®K L).

Proof. For the first assertion, see [ Sei, Chapter 12, Theorem 2]; for the sec-

ond, see [ Sei, Chapter 12, Exercise 2]. The third assertion follows from [JW,

Theorem 5.15]; an elementary proof appears in [FSS, Lemma 4.6].

In our applications of Proposition 1, K will always be Q((f)) and K will be

Q. If L/q is ^-Galois, we identify 9 as Gal(L((/))/Q((0)) by ̂ ting 9 act
trivially on /. We begin our study of Q((r))-admissibility with a preliminary
result.

Lemma 2. Let E/Q((t)) be a S?-Galois extension of odd degree. Then there

exists a &-Galois extension E of Q such that E = E((t)).

Proof. Let T be the maximal unramified extension of Q((i)) in E. Then

E/T is a totally and tamely ramified extension. By [W, Proposition 3-4-3],

E = T(tfñ) where n is a prime element of T and e = [E : T]. Since E/T

is Galois, T contains a primitive e-th root of unity, (. Since [T : Q((t))] is

odd, [Q((r))(0 : Q((t))] is odd. Since e is odd, e = 1, and so E/Q((t)) is

unramified. Thus E = E((t)) where E/Q is ^-Galois.   D

Theorem 3. Let & be a Q((t))-admissible group of odd order. Then & is Q(t)-

admissible.

Proof. By assumption, there exists a Q((/))-division algebra D having a &-

Galois maximal subfield. Since \2?\ is odd, Lemma 2 implies that this max-

imal subfield is of the form E((t)) where E/Q is ^-Galois. By Proposi-

tion 1(1), there exists a Q-division algebra Do, a cyclic extension L of Q,

and a generating automorphism a for Gal(L/Q) such that [D] = [Do ®q

Q((t))] + [(L((t))/Q((t)),a,t)]. Since E((t)) splits D, E splits D0 and
E D L by Proposition 1(2). Let Dx be the division algebra component of

[Do ®q Q(0] + [(L(t)/Q(t) ,a,t)]£ Br(Q(/)). Since E splits D0 and E D L,
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E(t) splits Dx, and so ind(A) < [E(t) : Q(r)] = \&\. But [Dx ®Q(t) Q((t))] =
[D], and so ind(A) > ind(D) = \&\. Thus ind(A) = \&\ = [E(t) : Q(t)].
Since E(t) splits Dx and [E(t) : Q(t)] = ind(A), E(t) is a ^-Galois maxi-
mal subfield of Dx. Thus É? is Q(?)-admissible.   D

We will show that the converse of Theorem 3 does not hold. We first exhibit

a class of groups of odd order which are Q(r)-admissible and then show that

certain groups in this class are not Q((r))-admissible.

Definition. A finite group ¿f is said to be meta-cyclic if & has a cyclic normal

subgroup with cyclic quotient group.

In the above definition, cyclic groups are considered to be meta-cyclic.

Theorem 4. Let t be transcendental over Q and let & be a group of odd order.

Assume that for every Sylow subgroup ¿P of &, there exists £Po<¿P with ¿P/¿Po

cyclic such that either.

( 1 )   &o is meta-cyclic, or

(2)  ¿Po can be generated by two elements and [3? : ¿Po] > \3°o\ ■

Then 9 is Q(t)-admissible.

Proof. Let \S?\ = p"x.. .pf where the p¡ 's are distinct primes. For each i =

1, ... , r, fix a Sylow p,-subgroup J3, of ^. By assumption, there exists ¿Pi<3°i

with ¿Pil&i cyclic such that ^ can be generated by two elements; if ^, is

not meta-cyclic, then ^ also satisfies ffi : S^¡] > ffi\. For 1 < i < r, ^
is a Galois group over Qp. by [ Se2, Chapter 2, Section 5.6, Theorem 3]. Let

JÍ = {i | &i is meta-cyclic} and let Jf' = {i \ 1 < / < r} - Jf. By [Soi,
Theorem 1], there exists a set {q,■ | i £ Jt} of distinct rational primes with no

qi in {px, ... , Pr} such that, for each i with ¿P¡ meta-cyclic, ^ is a Galois
group over Q. By [N, Corollary 2], there exists a ^-Galois extension E/Q

such that ¿P¿ is a decomposition group for E/Q at p¡ for 1 < i < r and also

at q¡ if @i is meta-cyclic.

For 1 < / < r, let |^;| = pf' , let L, be the fixed field of ^ , let K, be the
fixed field of ¿P¡, and let c, = a¡ - b¡. Then L¡/K¡ is cyclic of degree pf . We
note that our hypotheses imply that c, > b¡ if ¿P¡ is not meta-cyclic. Let 07

be a generator for Gal(L,/ÄT;) and let rî, G S* extend a . By the Tchebotarev

Density Theorem [P, Theorem 18.7], there exists a set {t¡ \ i £ J?'} of distinct

rational primes with no r, in {px, ... , pr} U {q¡ \ i £ Jf} such that (a¡) is
a decomposition group for E over Q at r,. For 1 < i < r, let D, be the

Q-division algebra such that:

(1) imPl([Di])=p-bi;

(2) if S®¡ is meta-cyclic, then inv9j([/),]) = -p~bi and invw([Dj]) = 0 if

w i {pi, qi\ ;

(3) if &i is not meta-cyclic, then inv,.([£>,]) = —P¡     and invw([D¡]) = 0

if it; i {pi ,tj}.

The form of the Hasse invariants for [D¡] imply that ind(D¡) = pf' . Since
is/Q is Galois, all primes of E extending a given prime of Q have the same

local degree over Q. By our choice of E, all primes of E lying over p¡ have

local degree pf' over <Q>. If ¿^ is meta-cyclic, all primes of £ lying over #,
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also have local degree pf' over Q ; if ¿P¡ is not meta-cyclic, all primes of E

lying over t¡ have local degree | (r>,) | > | (a) | = pf > pf' over Q. It follows

that E splits D¡. Moreover, since p¡ has an extension of degree one to L,,

ind(A ®q Li) = pf'.
By [FSS, Lemma 4.7], there exists d¡ £ K¡(t)* such that if a, = [A®qQ(0] +

ßi where # = co^]([(L¡(t)/K¡(t), m, d¡)]), then india,-) > ind(A ®q ¿/) ■

[^ : ^,] = /7ft'+c< = \£x>j\. We will show that ind(a,) = |^| and that E(t)

splits a,.

Since E(t) D L,(i), ßt £ BT(E(t)/K¡(t)) * H2(^, E(t)*). The corestric-

tion map cori',^ : Br(^T,(i)) —► Br(Q(r)) corresponds to the cohomological

corestriction map coif,. : H2^, E(t)*) —► H2(&, E(t)*) g Br(E(t)/Q(t)). It
follows that ßi is split by E(t). Since E splits D,, £(?) splits a¡. Moreover,

since [Li(t) : K¡(t)] is a power of p¡, ind(ßj) is a power of p and so exp(/?()

is a power of p [P, Proposition 14.4b(ii)]. Since coríi^' is a homomorphism,

exp(corQ,((P (/?,)) is a power of p,. Since exp(Z),) is also a power of p,, exp(a,)

is a power of p¡ and so ind(a,) is a power of /;, [P, Proposition 14.4b(ii)].

Since \3°i\ is the exact power of p dividing [E(t) : <Q(t)] and ind(a,) > \â°j\,

it follows that ind(a,) = \&i\.

Let D be the division algebra component of ® a,, the tensor product being
1=1

taken over Q(f). Then ind(D) = \§\ [P, Proposition 14.4b(viii)]. Since E(t)
splits D and [E(t) : Q(r)] = ind(D), E(t) is a maximal subfield of D and so
§ is Q(r)-admissible.   D

For future reference, we note that the proof of Theorem 4 yields a Q((t))-

admissibility result for groups of a very special type. Suppose that p is an

odd prime, %? is a p-group that can be generated by two elements, and ET

is a cyclic p-group with \3~\>\%'\. Let & = %* x y. Following the

proof of Theorem 4, we construct a ^-Galois extension E/Q such that %?

is a decomposition group at p and we construct a Q-division algebra D of

Schur index |¿F| split by E and such that ind(D ®Q E*) = \%'\. Let D =

£>((r)) ®q((í)) (£^((i))/Q((0) ,cr,0 where D((t)) denotes the inertial lift of D

to Q((r)). By Proposition 1(3), ind(D) = \&>\ = [D : Q((i))]'/2. It follows that

D is a Q((r))-division algebra. Since E((t)) splits D, is((r)) is a maximal

subfield of Z). This proves:

Corollary 5. Let p be an odd prime, let %f be a p-group that can be generated

by two elements, and let ^ be a cyclic p-group with \J7~\ > \%?\. Then %* x ¡T

is Q((t))-admissible.

Lemma 6. Let & be a group of odd order for which there exists a prime p

satisfying:

(1) & has a Sylow p-subgroup which is not meta-cyclic, and

(2) & has no homomorphic image of order p.

Then t? is not <Q((t))-admissible.

Proof. Assume that & is Q((i))-admissible and let D be a Q((?))-division al-

gebra which is a crossed product for & . Let Ê be a ^-Galois maximal subfield
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of D. By Lemma 2, Ê = E((t)) where E/Q is ^-Galois. By Proposition 1(1),
there exists a Q-division algebra D, a cyclic extension L/Q, and a generator

<7 for Gal(L/Q) such that [D] = [D®Q®((t))] + [(L((t))/Q((t)),o,t)]. Since

E — E((t)) splits D, E splits D and E ¡3 L. Since & has no cyclic quotient

of order p, p does not divide [L : Q] = [L((t)) : Q((i))] • Since L((t)) splits
(L((r))/Q((0), ff, t), ind((L((r))/Q((r)), o, t)) is prime to p . It follows that

Dp = Dp <8>q Q((t)). Let \&\ = prw where (p, m) = 1. Since ind(D) = \9\,
ind(Dp) = pr. It follows that there exists a prime q of Q, q ^ p , such that Dp

has local index pr at q . Let ^ be an extension of # to £. Since E splits D,

E splits Dp . Thus pr divides [En : Qq]. Since Gal(E7l/Qg) Ç *§, there exists

a Sylow p-subgroup & of 5? with ^ ç Gal(£„/Q?). Let V c £* be the fixed
field of ¿P . Since q ^ p , is*/F is tamely ramified and so ¿P — Gal(En/V)
is meta-cyclic [W, Theorem 3-5-3 and Proposition 3-6-4], contrary to (1). Thus

& is not Q((r))-admissible.   □

Corollary 7. There exists a Q(t)-admissiblegroup which is not Q((t))-admissible.

Proof. Let S? be the group with generators xx, x2, xt, , y, z and relations:

xj7 = x\ = x\ = 1, y3 = z3 = I, yz = zy, x¡Xj = XjX¡ for 1 < /, j < 3,

yx/V-1 = *,+i for /' = 1, 2, yx3y_1 = xx, and zx,z-1 = xf for »'=1,2,3.
Let %? = (xx, x2, X3). Then ^'<^' and ^ is a Sylow 7-subgroup of ^. Since

^ is contained in the commutator subgroup of &, & has no homomorphic

images of order 7. *& is Q(i)-admissible by Theorem 4 and is not Q((i))-

admissible by Lemma 6.   G

As mentioned earlier, any homomorphic image of a Q-admissible group is

necessarily also Q-admissible [Sc, Corollary 2.3]. We next show that the anal-
ogous result for Q((i))-admissibility is false.

Example. Let p be an odd prime and suppose that S°o is the non-abelian group

of order p3 and exponent p . Let W = ^0 x (Z/pZ) and let & = S*>0 * (Z/p3Z).
Then & is Q((r))-admissible, Sf is a homomorphic image of ^, and ^" is

not Q((0)-admissible.

Proof. & is Q((i))-admissible by Corollary 5. Since %? is clearly a homo-

morphic image of &, we need only show that J" is not Q((r))-admissible.

Suppose it is. Then there exists a Q((r))-division algebra D of index p4

possessing a maximal subfield £ with E/Q((t)) ^-Galois. By Lemma 2,

£ = £((r)) for some ^"-Galois extension £ of Q. By Proposition 1(1), there

exists a Q-division algebra Do of p-power Schur index, a cyclic p-extension

L of Q, and a generator o for Gal(L/Q) such that [D] = [(D0 ®q Q((0))1 +
[(L((t))/Q((t)), a, r)]. By Proposition 1(3), p4 = ind(D) = ind(D0 ®q L) • [L :
Q]. Since £((/)) splits D, £ splits Do and E D L by Proposition 1(2). Since
ffî has exponent p and Gal(L/Q) is a homomorphic image of %?, [L : Q] = 1

or p . Thus ind(Do) > ind(Do<8>Q.L) > P3 • It follows that there exists a rational

prime q ± p such that the local index of Do at q is > p3. Since E splits

D0, the local degree of E over Q at q must be > p3. Since <? ̂  p, the
local extensions of E over Q at q are tamely ramified and so the local Galois

groups are meta-cyclic [W, Theorem 3-5-3 and Proposition 3-6-4].  Since the
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local Galois groups are subgroups of %?, it follows that %? must possess meta-
cyclic subgroups of order > p3. Since ^ has exponent p , this is impossible

and so X is not Q((í))-admissible.   d
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