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FRACTIONAL POWERS OF MOMENTUM
OF A SPECTRAL DISTRIBUTION

M. JAZAR

(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper we construct fractional and imaginary powers for the

positive momentum B of a spectral distribution and prove the basic properties.

The main result is that for any a > 0 , -Ba generates a bounded strongly

continuous holomorphic semigroup of angle | . In particular for a = 1 , using

Stone's generalized theorem, if iB generates a k-times integrated group of type

0(|/|fe) with cr(B) c [0, +oo[, then -B generates a strongly continuous holo-

morphic semigroup of angle |. A similar corollary is given in the regularized

group situation.

1. Introduction

A spectral distribution is a ^-functional calculus of the momentum B (see
below), and in [5] we have shown how to define f(B) for any function / e

W°°(V), where F is a neighborhood of o(B). This allowed us to define the

ath power of (B + e) (a e C, o(B) c [0, +oo[, and e > 0) as the image of

the function t .-► (t + e)a and finally Ba = lime^0(B + e)a •

In [5] the authors introduced spectral distributions and gave a generalization

of Stone's theorem to a Banach space which connects the momentum of a spec-

tral distribution (see [5] and [16]) to the generator of a temperate integrated
group (see [1]) and to the generator of a smooth distribution group (see [3] and
[4]). An extensive number of applications of this theorem to the fundamental
Cauchy problem in Lp(Rn) is given in [14] and [16]. The relation between

spectral distribution and C-regularized group (see [8], [9], [10], and [19]) is
given in [13].

The typical example of the momentum of a spectral distribution is the Schrö-

dinger operator A in Z/(R"), p e R (see [14]). Comparing with the fact that

A is itself the generator of a bounded holomorphic semigroup of angle \ , once
we have constructed the ath power of B, surprisingly we found that if B is

the momentum of a spectral distribution, then -Ba generates a holomorphic

semigroup of angle f . Hence we claim that the originality of this paper lies not
only on the new construction of the fractional power which coincides with the

standard definition of fractional power of the generator of a holomorphic semi-
group (see Remark 3.13) but on the fact that we retrieve the strong continuity

Received by the editors May 19, 1993 and, in revised form, September 30, 1993.
1991 Mathematics Subject Classification. Primary 47B40, 47A60.

©1995 American Mathematical Society
0002-9939/95 $1.00+ $.25 per page

1805



1806 M. JAZAR

and the analyticity of the semigroup generated by -Ba when iB generates a

fc-times integrated group of type 0(1*1*) with a(B) c [0, +oo[. This can be
considered in some sense as a converse of the result of [12].

Our tools permit us to get the basic properties of Ba (like D(Ba) c D(B?)

for Rea < Reß and BaB^x = Ba+I*x) even if 0 e a(B) (compare with [18])

and give a simple representation of the holomorphic semigroup

Ga(z) = %(t^e-zW)

generated by Ba (compare with [7] or [20]).

In §4, using the relation of the momentum of a spectral distribution with
regularized group, we give the fractional derivatives formula of (iB)a (see [17]).

2. Spectral distribution and its basic properties

Let A' be a Banach space and SA (X) the algebra of bounded linear operators

with the uniform operator topology. All the definitions and results of this section

can be found in [5].

Definition 2.1. By a spectral distribution we mean a linear continuous mapping

r from 3f - ^°°(R, C) into 5A(X) which satisfies:

(i) ÏÏ(cp-\p) = %(tp)%(\p) for all cp,tpe2(W).
(ii) For any function cp e2¡ suchthat cp(0) = 1, ^(cpn) converges strongly

to the identity /, where tp„(t) = cp(t/n).

Definition 2.2. For any / e ^°°(R) let us define B'(f) as an unbounded linear

operator by:

D'Z'f)) = \x e X ; lim %(f<p„)x exists for any cp e 2! with 0(0) = 11.
n—»oo

Then for xeD(%(f)),

%(f)x= limë?(fcpn)x.
n—»oo

One can show that this definition is independent of the choice of cp.

Definition 2.3. We say that an unbounded linear operator B admits the spectral

distribution % , or B is the momentum of If, if there is a spectral distribution

pf such that B = %(t). Here t denotes the identity function in R.

For / e N, let !7¡ denote the completion of 2 for the following norm p¡

Pi(<P) = S

and by $ = &-x&¡ = {f;9~f e ^¡} equipped with the norm n/(/) =
Pt(ff), where [9~f](t) = ¡Re-2i*tsf(s)ds. We say that a spectral distri-

bution F is of degree I, if J? can be extended to a linear continuous mapping

from % into SA(X).
Finally let AT denote the completion of the Schwartz space A? equipped with

the system of semi-norms (pk) and 3~ the completion of {cp e S?\&tp e ¿7~}

in the space of temperate distributions S"'.

By the inequality [5, (3.1)], for any k < I we have AT <-» ¿A¡<-+ ATk .

■ÉL
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Remark 2.4 (see [5]). Let I? be a spectral distribution. Then:

(i) For any x e D(W(f)) we define f(B)x = %(f)x .
(ii) 31 = IJp€^ %(<p) Ç D(g(f)) and it is dense in X.

(iii) -§"(/) is a densely defined closed linear operator.

(iv) If / = g on sp(fi) (spectrum of B), then f (/) = W(g). Thus, we

can define %(f) for any / e <W°°(V) where F is a neighborhood of

sp(fi).

Lemma 2.5. Lei J? <7<? i/z»? momentum of a spectral distribution tf, éz«í/ to /

a«i/ g be two functions in W°°(R) or &. Then f(B)g(B) c (f • g)(B) with
D(f(B)g(B)) = D((fg)(B)) n /)(*(*)).

Theorem 2.6 (Stone's generalized theorem, see [5]). Let A be a linear densely

defined operator on a Banach space X. The following are equivalent.

(i) A generates a smooth distribution group of order k.

(ii) A generates a k-times integrated temperate group {0(i)}feR suchthat

\\G(t)\\ <C\t\k for any ieR.
(iii) iA admits a spectral distribution of degree k.

3. Fractional and imaginary powers

In this section we will show how to construct fractional and imaginary powers

of the positive momentum B of a spectral distribution I? of a finite degree k .

For this we will proceed as in [18]: If B is positive (o(B) ç [0, +oo[), e > 0,

and (B + e) is strictly positive, we define (B + e)a , and then Ba , as the limit

of (B + e)a as e goes to zero.

In the sequel we denote by Y(t) the Heaviside function: Y(t) = 1, for

t > 0, and zero elsewhere.

Basic properties of Ba .

Definition 3.1. The momentum B of a spectral distribution J? is called positive
(respectively, strictly positive) if the spectrum of B is contained in [0, +oo[

(respectively, ]0, +oo[).

Remark 3.2. Since the spectrum of B is always closed, if B is strictly positive
there exists e > 0 such that a(B) ç [e, +oo[.

The problem in the positive case is that the function t .-> ta is not W°° on

a neighborhood of a(B).
By Remark 2.4(iv), for any a e C, we can define the ath power of (B + e) :

Definition 3.3. Let B be the positive momentum of a spectral distribution £? .

For any a e C, e > 0, we denote by (B + e)a the operator W(t i-+ (t + e)a).

Lemma 3.4. Let B be the positive momentum of a spectral distribution £? ,Xe<C

such that Im/I -^ 0. Then:

(1) For all e > 0, %(t ^ (t + e)J) = (B + e)J, j el. In particular, for
e > 0, W((t + e)-J) e SA(X) for any jeN.

(2) For any a e C, Rea > 0, the function 11-> (X - t)~a is in AT.
(3) For any a e C, e > 0, the operators %(t •-» (t + e)a(À - t)~a) and

%(t p- (X - t)a(e + t)~a) are bounded.
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(4) For any a e C, e > 0, D((B + e)a) is independent of e and

D((B + e)a) = D((X - B)a) = Im(f ((A - t)~a)).

(5) For ail e > 0, (B + e)~a is bounded for any aeC with Rea > 0.

Proof. (1) The equality ^((t + e)j) = (B + e)j is obvious for ;' e N. Now take
; e N and let us show that g((t + e)~j) = (B + e)~J . In fact by Lemma 2.5,
g((t + e)-J) is the inverse of (B + ey1, and D(g((t + e)~J)) = lm((B + e)J) =

D((B + e)-j) = X, because -e i o(B).
(2) See [5, Lemma 4.10.3].
(3) Take p = X + e, peC, with lmp^O. Let u = t + e; then by the Taylor

formula we have

(t + er(p-(t + e))-° = (-l + (l-u/p)-xr
n

= (-l)a + y£cjia(l - u/p)-j + 0(\l - u/p\-n~x) = c + h(t),

7=1

where

h(t) = ¿Q,.(l - u/p)-j + 0(\1- u/p\-"-x),
;=i

n is an integer greater than Re a, and c and C¡, a are scalar. Since by the last

point the function t .-> (1 - (t + e)/p)~j is in 3~, the function h is in 17 and
W((t + e)a(p -(t + e))~a) = cl + W(h) is bounded. In the same way

(X - t)a(t + e)~a = c' + ¿ C'jta((t + e)/fi)-J + 0(\(t + e)/p\-n~x)

j=o

= c' + k(t) .

Since by the first point g((t + e)-J) is bounded, %((t + e)a(p - (t + e))~a) is

bounded too.
(4) By Lemma 2.5 and the equality

(t + e)a = (c + h(t))(X-t)a,

if x e D((X - B)a), then x e D((B + e)a) (because (X - B)ax e D(cl + h(B))

which is X). Conversely, by the equality

(X-t)a = (c' + k(t))(t + e)a,

if x e D((B + e)a), then x e D((X - B)a) (because (B + e)ax e D(c' + k(B))

which is X). So D((B + e)a) = D((X - B)a) (hence independent of e), and by
Lemma 2.5 D((X - B)a) = Im(^((A - t)~a)).

(5) By this last point and Lemma 2.5 we have

D((B + e)~a) = D((X - B)~a) = X.   D

The following theorem gives us the basic properties of the fractional powers
of (B + e):

Theorem 3.5. Let B be the positive momentum of a spectral distribution <A?.
Then:

(i) D((B + e)ß) ç D((B + e)a), for a, ß e C, Rea < Reß .
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(ii) (B + e)a(B + eYx = (B + eY(B + e)ax = (B + e)a+p'x, for a, ß e C, x e

D((B + e)y) where y e {a, ß, a + ß} satisfying

Re y = Max(Re a, Re ß, Re(a + ß)).

Proof, (i) Note that if Rea < 0, and by the point (5) of the last lemma, the

inclusion is obvious. Suppose then 0 < Re a < Re ß , and define for y > 0,

Ry=^((X-t)~a).

By the last lemma, Ry e SA(X), and by the point (4) D((B + e)y) = lmRy.
Writing Rß = RaRß_a we conclude.

(ii) Take y = {a,ß,a + ß}, verifying Rey = Max(Rea, Reß, Re(a + ß)),

and x e D((B + e)?). By (i), x e D((B + e)a) n D((B + e)¿) n D((B + e)Q+").
Applying Lemma 2.5 and the spectrality of rf we conclude.   D

Definition 3.6. Let B be the positive momentum of a spectral distribution pf .
For any a e C, define Ba by

D(Ba) = ixe D((B + e)a), for e > 0, such that lim(5 + e)ax existí,

and for x e D(Ba),
Bax = lim(B + e)ax.

£—0

This definition is consistent, since by (4) of Lemma 3.4 D((B + e)a) is

independent of e. Moreover the following theorem shows that D(Ba) =

D((B + e)a), for any e > 0.

Theorem 3.7. Let B be the positive momentum of a spectral distribution g?.

For any a e C and any e > 0, we have

D(Ba) = D((B + e)a) = D((X - B)a),

where X is a complex number such that Im X / 0.

Proof. By the proof of Lemma 3.4 we have (t + e)a = (c + he(t))(X - t)a where

n

he(t) = ^Cj,a(l - (t + e)/p)~J + 0(\l - (t + e)/p\-"~x),

j=0

XeC, ImA t¿ 0, and p = X-e.
Note that, since for any j > 1 and the function t i-> (1 - (t + e)/p)~J

goes in IT to the function í h (1- t/X)~J, when e goes to zero, then he

goes in & to a function h, when e goes to zero. Hence by Lemma 3.4, for
x e D((B + e)a) = D(g((X - t)a)) we have

lim(5 + e)ax = lim(-I + %(ht))(X - B)ax
e-»0 e—»0

= (-I + g'(h))(X-B)ax,

which shows that this limit exists, and thus D(Ba) = D((B + e)a).   D

Theorem 3.8. Let B be the positive momentum of a spectral distribution ë?.
Then:

(i) D(BP) ç D(Ba), for any complex a, ß, with Rea<Reß.
(ii) BaB^x = B0Bax = Ba+I*x, for a, ß e C,x e D(B?)  where y e

{a, ß, a + ß} verifying Rey = Max(Rea, Reß, Re(a + ß)) ■
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Proof. The first point is obvious applying the preceding theorem and Theorem
3.5(i).

(ii) Take y e{a, ß,a + ß} such that Rey = Max(Rea, Reß, Re(a + ß)),

and x e D(By). By (i), jc G D(Ba) n D(B^) n D(Ba+li). By Theorem 3.5, for

any e > 0, we have (B + e)a(B + e)^x = (B + e)a+^x. On the other hand, by

continuity of 0" we have

BaBßx = lim(B + e)a lim(B + x)ßx
«-»0 T-0

= limlim(B + e)a(B + x)ßx,
£-»0t-»0

so the limit of (B + e)a(B + T)Px exist when e and t go to zero independently,

and is BaBßx. In particular the limit of (B + e)a(B + e)ßx exists when e goes

to zero and is BaBßx.   □

In the following theorem we give the basic fact on the nature of Ba :

Theorem 3.9. Let B be the positive momentum of a spectral distribution if of

degree k. Then for any a > 0, -Ba is the generator of a bounded strongly

continuous holomorphic semigroup.

Proof. In fact, it is sufficient to show that -B generates a bounded strongly

continuous holomorphic semigroup of angle | (see [11]). To show this, it is

sufficient to show that -e'^B generates a bounded strongly continuous semi-

group, whenever \tj>\ < \ .

So fix tp so that 101 < f . Define g(t) = e"'^ , and for s > 0, gs(t) =

g(st). In order to show that g is in ATk , we write g(t) = f(t) + f(-t), where

f(t) = Y(t)e~e'*'. Using the fact that Ff({) = (ie* + Ç)-x, we get that

-?>({) = 2iei*(-eli* - ¡A2), which is in 7. So g e 7k and for all s > 0,
ïlk(gs) = tlk(g), where gs(t) = g(st). Let G(s) = %(gf). For n sufficiently
large, Uk((gs(t) - 1)(1 + 1)~") converges to zero as s -► 0. Thus G(s)x -> x,
for all jc e Im((l + B)~n) = D(Bn). Since this is a dense set and ||0(s)||

is uniformly bounded, it follows that G(s) converges strongly to the identity.

Againfor n sufficiently large, %-sgs(t)(l+t)~n = -e'^gs^l + t)-" , where the

derivative is taken in the norm Ylk . Using the fact that B is strictly positive,

this implies that j-sG(s)x = -ei4'BG(s)x, for all x e D(Bn), so that, since

D(Bn) is a core for B, {G(s)}s>o is a bounded strongly continuous semigroup

generated by -e'^B.   D

Remark 3.10. In the preceding theorem, what is surprising is that we do not

have any restriction on a > 0, and it is clear that Bx = B . Thus B is also the

generator of a bounded strongly continuous holomorphic semigroup of angle
n
2 ■

Using Stone's generalized theorem we can write the last theorem as follows.

Corollary 3.11. Let A be the generator of a k-times integrated group of type
0(\t\k) suchthat o(A) c]0; -z'oo[. Then for any a > 0, -(iA)a is the generator

of a bounded strongly continuous holomorphic semigroup of angle |.

Corollary 3.12. Let A be the generator of a uniformly bounded group such that

o(A) c]0; -/oo[. Then for any a > 0, -(iA)a is the generator of a bounded

strongly continuous holomorphic semigroup of angle f .
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Remark 3.13. In view of Theorem 3.9, the strictly positive momentum of a spec-

tral distribution generates a bounded strongly continuous holomorphic semi-
group, so it is important to show that our construction of fractional powers

coincides with the classical one. Using Pazy's construction [20, 2.6] it suffices

to show that for 0 < a < 1,

g>(r-> ra) =-^-^ rs-a(sI + B)-xds,
it    Jo

where B is the strictly positive momentum of a spectral distribution. To show
this write (si + B)~x = ëf(t i-> (s + t)~x), we have

sina7t   f°°  _„. .     _._, ,       sina7T  f°°    „„_.       .       ._,.  ,
- /    sa(sI + B)xds =- /    s-"ë?(t^(s + t)-x)ds

Tt      Jo 1      io

because the appropriate Riemann sums converge in the norm n^

= ™^%(t~[s-*(s + t)-xds)

n        V       sinare     /

= ÍT(t^t~a).

Remark 3.14. When an operator A generates a /c-times integrated semigroup

that is 0(tk), then it is not hard to show (see [5, Lemma 4.10(1)] or [15, Remark

after Theorem 4.1]) that there exists a constant M so that

(*) \\(s + A)-"\\< — ,    for all s >0,

so that we may define A" in the usual way (see Pazy [20] and Remark 3.13).

When B is the positive momentum of a spectral distribution, as in this section,

then by Theorem 2.6 iB generates a /c-times integrated group that is 0(1*1*) ;
thus we could use this construction to define Ba = (-i)a(iB)a ; as in Remark

3.13, this definition may be shown to be equivalent to the definition of this sec-

tion. One could then use the known properties of fractional powers of operators

satisfying (*) to obtain Theorem 3.8. But it is of interest to see Theorem 3.8

deduced by a functional calculus argument, as is done here. Lemma 3.4 will

also be needed for the next section.

4. Fractional derivatives

Take A the generator of a uniformly bounded semigroup {G(t)}t>o ; then in

lieu of constructing Aa as the generator of the semigroup {Ga(t)}r>o one can

show that Aa could be the ath derivative of A , i.e.,

Aax = lim((G(t)-I)/t)ax,

where this limit exists if and only if x e D(Aa) (see, for example, [17]).

In our case, when B is the momentum of a spectral distribution ë? of degree
k, we will show an analogous formula, using the relation with the (X - iB)~k-

regularized group (see [13, Theorem 3.1] or [16, théorème IV. 1.1]).



1812 M. JAZAR

Theorem 4.1. Let B be the strictly positive momentum of a spectral distribution

ë? of degree k. Then for any a e C with Rea > 0, (iB)a is the ath derivative

of the (X-iB)~k-regularized group {lVx(s)}sçm defined by

Wx(s) = %(t h-> (A - t)~k exp(ist)),

i.e.

D(Ba) = \x such that lunf^A - *)-*(exp(/s*) - l)/s)a)x exists
( i—»o

andisinD(ê?((X-t)ak))\,

and for x e D(Ba),

(iB)ax = %((X- t)ak)limg(((X- t)~k(exp(ist) - l)/s)a)x,
s—»0

where X e C\R.

Proof. Since the case k = 0 is immediate, let us suppose k > 0. By Lemma

3.4.2 the function *.->(/- t)~ak is in IT, and using Lemma 2.5 the operator

Ca = ê?((X - t)~ak) is a bounded injective operator. Let us denote by C_Q its

inverse.

Now take x e D(Ba), for 5 positive we have

pf(((/ - f)-*(exp(wi) - l)/s)a)x - Ca(iB)ax

= ëf((X - t)~ak(((exp(ist) - l)/sf - (it)a))x.

Since the function of the right-hand member satisfies the hypothesis of [5,
Lemma 4.5] with

f(s ,t) = (X- t)-ak(((exp(ist) - l)/s)a - (it)a),

this shows the first inclusion.
Conversely, take x such that the limit exists and is in D(ëf ((X-t)ak)), and let

x„ = ë?(<f>n)x, where cj>n are as in Definition 2.1(h). Since for all n , functions

* h» <pn(t)(it(X - t)-k)a and * h-» cpn(t)(((X - t)~k(exp(ist) - l)/s)a) are in 3Ak

(see Lemma 3.4), and applying [5, Lemma 4.5] with the function

f(s, t) = <p„(t)(((X - t)-k(exv(ist) - l)/s)a),

we get

limr(((A - 0~*(exp(w/) - l)/s)a)xn = W((it(X - t)~k)a)xn .
s—»0

Now define, for fixed a, the family of operators

S(s) = r(((A - 0"*(exp(w0 - l)/s)a)       (s>0).

Then we have

ë?(ta4>n)x - ë?(tacpm)x = (X- B)ak \lim S(s)(xn - xm)
s—»0

= g?(4>n - 4>m) [(X - B)ak limS(s)x^ ,

thus e?(taff)n)x is Cauchy and, hence convergent, so that x e D(Ba).   D
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