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NORMAL DERIVATIONS IN NORM IDEALS

FUAD KITTANEH

(Communicated by Palle E. T. Jorgensen)

Abstract. We establish the orthogonality of the range and the kernel of a

normal derivation with respect to the unitarily invariant norms associated with

norm ideals of operators. Related orthogonality results for certain nonnormal

derivations are also given.

1. Introduction

Let B(H) denote the algebra of all bounded linear operators on an infinite-

dimensional complex separable Hilbert space H. For operators A, B in B(H),

the generalized derivation SA>B as an operator on B(H) is defined by

(1) ôAiB(X) = AX-XB   for all X e B(H).

When A = B, we simply write öA for 6AA. If N is a normal operator in

B(H), then On is said to be a normal derivation.
In his investigation of normal derivations, Anderson [1, Theorem 1.7] proved

that if N and S are operators in B(H) such that TV is normal and NS = SN,

then for all X e B(H)

(2) }\ÔN(X) + S\\>\\S\\,

where || • || is the usual operator norm. Thus in the sense of [1, Definition 1.2],
inequality (2) says that the range of Sn is orthogonal to the kernel of On , which

is just the commutant {N}' of N.

It has been shown in [11, Theorem 1] that if N and S are operators in

B(H) such that N is normal, S is a Hilbert-Schmidt operator, and S e {N}',
then for all X e B(H)

(3) \\ÔN(X) + S\\22 = \\ÔN(X)\\2 + \\S\\2,

where || • H2 is the Hilbert-Schmidt norm. Thus in the usual Hilbert space sense,

the Hilbert-Schmidt operators in the range of 6^ are orthogonal to those in the

kernel of ¿/y.
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It has also been shown recently in [12, Theorem 3.2] that if N and S are
operators in B(H) such that N is normal and S belongs to some Schatten

/7-class Cp with 1 < p < oo and S e {N}', then for all X e B(H)

(4) \\ÔN(X) + S\\P>\\S\\P.

The usual operator norm, the Hilbert-Schmidt norm, and the Schatten p-

norms are only examples of a large family of unitarily invariant (or symmetric)

norms on B(H).
The purpose of this paper is to investigate the orthogonality of the range and

the kernel of a normal derivation with respect to the wider class of unitarily
invariant norms on B(H). Derivations induced by certain nonnormal operators
will also be discussed.

In §2 we will use a completely different analysis to extend (4) to all unitarily

invariant norms defined on norm ideals of compact operators in B(H). Exten-

sions of this result to certain nonnormal operators will be the main theme of

§3, in which we will treat derivations of the form öAtB , where A is a domi-

nant operator and B* is A/-hyponormal. Moreover we will discuss the validity

of (2) for various classes of derivations at the expense of requiring that S is
normal. A relevant example will also be presented.

Recall that each unitarily invariant norm ||| • ||| is defined on a natural sub-

class /m«m of B(H) called the norm ideal associated with the norm |||-|||

and satisfies the invariance property |||iX4F||| = |||^||| for all A e J\\\-\\\ and
for all unitary operators U, V e B(H). While the usual operator norm || • || is
defined on all of B(H), the other unitarily invariant norms are defined on norm

ideals contained in the ideal of compact operators in B(H). Given any compact

operator A e B(H), denote by Sx(A) > s2(A) > ■■■ the singular values of A ,

i.e., the eigenvalues of \A\ = (A*A)XI2. There is a one-to-one correspondence

between symmetric gauge functions defined on sequences of real numbers and
unitarily invariant norms defined on norm ideals of operators. More precisely,

if HI • HI is a unitarily invariant norm, then there is a unique symmetric gauge

function <P such that

(5) \\\A\\\ = <t>({sj(A)})

for all A e J\\\-\\\ ■
For 1 < p < oo, define

(6) \\A\\p=\Ts*(A)

where, by convention, ||^||oo = si(A) is the usual operator norm of the compact

operator A. These unitarily invariant norms are the well-known Schatten p-

norms associated with the Schatten p-classes Cp , 1 < p < oo . Hence C\,C2,

and Coo are the trace class, the Hilbert-Schmidt class, and the class of compact

operators, respectively. For good accounts on the theory of norm ideals and

their associated unitarily invariant norms, the reader is referred to [9], [13], or

[14] (see also [2] and references therein).

2. Normal derivations

In this section we present our main result of this paper. This result asserts

that if N is a normal operator in B(H), then with respect to any unitarily
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invariant norm |||-|||, ranSN n J\\\-\\\ is orthogonal to kerá^ n /|||.|||, where
ran ¿at and kerô^ are the range and the kernel of 3^ , respectively.

To accomplish our goal we need two lemmas.

Lemma 1. Let N e B(H) be diagonal (normal with pure point spectrum), S e

{N}' ,andXe B(H). If 6N(X) + Se %. N,, then S e Jw. w and

(7) WM*) + s||| >
Proof. Let N have the distinct eigenvalues

the decomposition H = ®°!

sentation

. ker(JV -

Ai

N =

Xx, X2, ... . Then, with respect to
Xj), N has the operator matrix repre-

0

Lo
Let [Sjj] and [X¡j] be the matrix representations of S and X with respect to
the above decomposition of H. Then NX - XN = [(X¡ - Xj)X¡j], and in view

of the assumption S e {N}' we have S¡j = 0 for / # /. Therefore,

Six
S22

NX-XN+S

Since Ôn(X) + S e J\\\-\\\  and since the norm of an operator matrix always
dominates the norm of its diagonal part (see [9, p. 82]), it follows that

S e/,,,. m and |||<M*) + SHI > HI-SHI.

Lemma 2. Let N e B(H) be normal, and set Hx = VA6C ker(N-X). If S e {N}'
and there is an X e B(H) such that ôN(X) + S e C^, then Hx reduces S and

S\Hf- = 0.
Proof. Since N is normal, Hx reduces N and N\HX is a diagonal operator.
By Fuglede's theorem (see [10, p. 104]) S* e {N}', so Hi also reduces S. Let

N N
0

0
N2

5,
0

0
S2

X = Xxx
x2i

Xx2
X22

on H = Hx® H2, where H2 = H^ . The assumption 6^(X) + S e C^ im-
plies Sm2(X22) + S2 e Coo ■ Anderson's result (2) (applied to the Calkin algebra

B(H2)/Coo) insures that S2 e C-» . Since the normal operator N2 has no eigen-

values and since the compact selfadjoint operator S2S2. belongs to {A^}', it

follows that Sj52 = 0. Hence S2 = 0, as desired.

Now we are in a position to prove the main result of this paper.

Theorem 1. Let N e B(H) be normal, S e {N}', and X e B(H). If SN(X) +
S e /iii . m, /«<?« 5 6 /m . m and

(8) |||^(X) + 5|||>
Proof. Since ôN(X) + S e J\\\. m ç Coo » it follows by Lemma 2 that on H =

H e Hl,

N =
Ni

0
0

N2
and   S =

Si
0

0
0
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where Hx = VA6C ker(W - X). If

X =

on H = Hi © i/^, then

ÔN(X) + S =

Xxx

X2x

Xx2
X22

à~Nx (Xi i ) + Si

Since öN(X) + S e J\\\,\\\, it follows that ô^(Xxx) + Si e J\\\.m . But Nx is
diagonal and Si e {Ni}'. Thus, by Lemma 1, Sx e J\\\-\\\ and ||l*^2v,(-^ii) +

SilH > 1115,111. Consequently, S e J\n.\n and \\\ÔN(X) + S\\\ > \\\oN¡(Xn) +
S,|||>|||S,||| = llalli.

At the end of this section we use a familiar device of considering 2x2

operator matrices to extend Theorem 1 to generalized normal derivations.

Corollary 1. Let N, M, S e B(H) such that N and M are normal and NS =

SM. If X e B(H) such that ôN,M(X) + S e J\\\.\\\, then Se J\\\-\\\ and

(9) |||^,mW + S|||>|||5|||.
Proof. On H © H consider the operators L, T, and Y defined as

L =
N    0
0    M

T =
0   S
0   0

0   X
0    0

Then L is normal, Te {L}', and

8L(Y) + T-- 0   ôAtB(X)   +   S
0 0

Thus by Theorem 1 applied to the operators L, T, and Y we have T e J\\\. \\\

and |||fc(y) + r||| > Hirill. Therefore 5 € /m-ni and \\\ÔA>B(X)+S\\\ > \\\S\\\,
as desired.

3. Nonnormal derivations

Extensions of (3) to certain subnormal operators have been given in [11,

Theorems 2 and 3]. In the same vein we devote this section to the extension of

the results in §2 to classes of operators larger than that of normal operators.

Recall that an operator A e B(H) is called dominant (see [15]) if

(10) ran(^ - X) ç ran(A - X)*   for allA e C.

In view of [6], A is dominant if and only if for each X e C there exists a

constant Mx such that

(11) IM-A)*/II<^||(^-A)/||   forall/e//.

If there is a constant M such that Mi < M for all X e C, then A is called

M-hyponormal. If M = 1, then A is hyponormal.
Our promised generalization of (9) can be stated as follows.
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Theorem 2. Let A, B, S e B(H) such that A is dominant, B* is M-hypo-

normal, and AS = SB. If X e B(H) such that ôAyB(X) + S e J\\\-\\\, then
S e /|||.||| and

(12) lll*4,nW + S|||>ll|S|||.
Proof. Since the pair (A, B) satisfies the Fuglede-Putnam property, it follows

(see [16] or [19]) that ran S (the closure of ran S) reduces A, kerx S (the

orthogonal complement of kerS) reduces B, and ,41 ran S and .Slker^S are

unitarily equivalent normal operators. Then, with respect to the orthogonal

decompositions H = ran S ®> (ran S)x and H = kerx S ®kerS, A and B can

be respectively represented as

A = Ax     0
0    A2

and   B = Bx    0
0    B2

Now assume that the operators S, X : ker1 S © ker S —> ran 5 © (ran S)-
the matrix representations

have

S = Sx
0

and   X = Xx
X3

X2

Then Ax and Bi are normal, and AxSx = SxBx.
Applying Corollary 1 to the operators Ai, Bi, Si, and Xx we see that Sx e

/in.in- Hence »S e/m-ni and

IIIVi>(*)+S||| ¿Al,Bl(Xi)+Sx      *

>lll<U,z,,(*.) + Si|||> 1115,111 =
which completes the proof of the theorem.

The usual operator norm version of (12) has been obtained by Elalami [7,

Theorem 4.1 ] using a different method.
We would like to point out here that in view of [ 16] Theorem 2 is still valid

for any pair of operators (A, B) which satisfies the Fuglede-Putnam property,

that is, A* S = SB* whenever AS = SB, where 5 G B(H). For several such

pairs, the reader is referred to [4] and references therein.

A closer look at the proof of Theorem 2 (see also [5, Theorem 1]) leads us to

show that if (A, B) satisfies the Fuglede-Putnam property and if S e C2 such
that AS = SB, then for all X e B(H) we have

(13) \\Sa,b(X) + S\\22 = \\öa<b(X)\\2 + \\s\\22.

This Hilbert space orthogonality result strengthens (3) and [11, Theorem 3].

It has been shown in [11, Theorem 4] that if A e B(H) is a cyclic subnormal

operator and if S e C2n {A}', then for all X e B(H) we have

(14) \\ÔA(X) + S\\2 = \\ÔA(X)\\2 + \\S\\2.

In the same direction, it should be noted that the proof of Theorem 2 can

be modified to insure that if A e B(H) is a cyclic subnormal operator and

S e /m. m n {A}', then for all X e B(H) we have

(15) |||^W + 5|||>|||5|||.
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To verify (15) we need only show that ran S reduces A and ^IranS is

normal, for then we can follow the arguments in the proof of Theorem 2.

Since S e {A}' and A is a cyclic subnormal operator, it follows by Yoshino's

result [18] that S is also subnormal. This, together with the assumption S e

/|||'IH Q Coo, implies that S is in fact normal. Consequently S e {A, A*}',

and so ran S reduces A. If T = AS*, then T e {A}' and T*T - TT* =
S(A*A - AA*)S* > 0 (because A*A - AA* > 0). Thus T is a compact hy-
ponormal operator, and hence T is normal. Now we have A A* S = ASA* =

AT* = T*A = SA*A = A*AS, and so ^IranS is normal.
In [8] an example is given to show that the cyclicity assumption on A is

necessary for (14) to hold. This gives an affirmative answer to a question raised

in [11]. The following example, which will also be used later in the paper, is
simpler and shorter than the one given in [8].

Example. Let U be the unilateral shift operator of multiplicity one. On H®H,

let A = [£°], S = [p°0], and X = [°°], where P = 1 - UU* and Q =

PU*. Then A is a noncyclic subnormal operator, S e {A}', and ÔA(X) +S =

0, yet |||(5/4(A')||| = |||£||| = 1 for every unitarily invariant norm ||| • |||.

This example also indicates that Anderson's result (2) cannot be extended

to derivations induced by subnormal operators. However, if we require S to

be normal, then in this case (2) works for several classes of operators. The list

includes compact operators, dominant operators, quasinilpotent operators with

positive real parts, and operators A for which p(A) = 0 for some quadratic

polynomial p (see [1, 17]).
Another interesting class of operators for which (2) is true when S is normal

is the class of operators A such that A* A and A + A* commute. It is well

known that this class enjoys the property that ||^|| = r(A) (the spectral radius
of A) (see [3]). Hence it is elementary to verify that (see [10, p. 130]) for all
X e B(H) and all X e C we have

(16) \\ÔA(X)+X\\>\X\.

Based on (16) and the spectral theorem for normal operators it can be shown
that if A, S e B(H) such that A*A commutes with A + A*, S is normal, and

S e {A}', then for all X e B(H) we have

(17) \\ÔA(X) + S\\>\\S\\.

To prove (17) we first assume that S is a normal operator with finite spectrum.

Then we use a continuity argument to establish the general case.

Finally, we remark that the example presented above shows that (2) fails to

hold for an arbitrary (not necessarily normal) operator S in the commutant

of A.
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