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ON THE MULTIPLE POINTS
OF CERTAIN MEROMORPHIC FUNCTIONS

J. K. LANGLEY

(Communicated by Albert Baernstein II)

Abstract. We show that if / is transcendental and meromorphic in the plane

and T(r, f) = o(logr)2 , then / has infinitely many critical values. This is

sharp. Further, we apply a result of Eremenko to show that if / is meromorphic

of finite lower order in the plane and N(r, l/ff") = o(T(r, f If)), then

f{z) = exp(az + b) or f(z) = (az + b)~" with a and b constants and n a

positive integer.

1. Introduction

If g is a function transcendental and meromorphic in the plane, then the

term

Ni(r,g) = N(r,g)-Ñ(r,g) + N(r,l/g'),

in which the counting functions are defined as in [11, Chapter 2], counts the

multiple points of g. The following has been proved by Eremenko.

Theorem A [5]. Let g be transcendental and meromorphic in the plane of finite

lower order such that ¿(oo, g) = 0 and Ni(r, g) = o(T(r, g)). Then there

exist an integer 2p > 2 and continuous functions Lx(r) and L2(r) such that

Lx(ct) = Lx(t)(l + o(l)) and L2(ct) = L2(t) + o(l) as t —> +oo, uniformly for

1 < c < 2, and such that

-log\g'(rew)\ = itr"Lx(p)\ cos(p(6 - L2(r)))\ + o(r"Li(r))

as r —» +00, uniformly in 6, 0 < 6 <2n, provided that re'e lies outside an

exceptional set Co of discs B(zk, rk) with the property that if R is large, then

the sum of the radii rk of the discs B(zk, rk) for which \zk\ < R is o(R).

Further, £aeCa(a, g) = 2 and T(r, g) = (1 +o(l))r"L,(r).

It follows from Theorem A that a transcendental meromorphic function g

of order less than 1 cannot satisfy Ni(r, g) = o(T(r, g)) and so must have
multiple points (Shea [19] had earlier proved this when g has order less than

1/2). Infinitely many of these multiple points must be zeros of g', as is shown
by the the following result from [6].
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Theorem B. Suppose that g is transcendental and meromorphic in the plane

with T(r, g) = o(r). Then g' has infinitely many zeros.

Further, if g is transcendental meromorphic with T(r, g) = o(rxl2) or

transcendental entire with T(r, g) = o(r), then g'/g must have zeros. These

assertions are proved in [3] and are shown there to be sharp.

This suggests the question as to whether a growth condition on a transcenden-

tal meromorphic function / forces / to have infinitely many critical values,
that is, values take by / at multiple points of /. If T(r, f) = o(rxl2) and
/ is transcendental with only finitely many poles, it is easily seen from the dis-
cussion in [18, pp. 269-272] that oo must be an accumulation point of critical

values of /, for otherwise the inverse function f~x would have a logarith-

mic singularity at oo and, if R is large, there would exist a simply-connected

unbounded component U of the set {z e C: |/(z)| > R}, with |/(z)| = R
on the boundary of U, which contradicts the cos np theorem [11, p. 119].

Corresponding to this remark is the obvious example cos(t/z) .
The above observation and example also appear in [2], of which the author

became aware after the first draft of the present paper was written. Among

other results in [2] concerning asymptotic and critical values of meromorphic

functions, it is shown (Corollary 3) that if the transcendental meromorphic

function / has finite order p and only finitely many critical values, then the

number of asymptotic values of / is at most 2p.
While a transcendental entire function always has oo as an asymptotic value,

by the classical theorem of Iversen [18], meromorphic functions need not have

any asymptotic values at all. Bank and Kaufman [1] (see also [13, Chapter 11])

proved the existence of a function / transcendental and meromorphic in the
plane with T(r, f) = 0(logr)2 , satisfying the differential equation

(z2 - 4)(f'(z))2 = 4(f(z) - ei)(f(z) - e2)(f(z) - e3),

in which the e¡ are distinct complex numbers, and this function / clearly has

just 4 critical values. This example is obtained from the Weierstrass doubly
periodic function. For smaller growth, we prove the following theorem, the

proof of which is based on a combination of representations for the function

in annuli with the Riemann-Hurwitz formula.

Theorem 1. If f is transcendental and meromorphic in the plane with T(r, f) =

o(logr)2, then f has infinitely many critical values.

Our second result is a fairly straightforward application of Theorem A, cou-

pled with a variant of a method of Mues from [17]. It was proved in [14]

that if / is meromorphic in the plane and / and /" have no zeros, then

f(z) = exp(az + b) or f(z) = (az + b)~" with a and b constants and n a

positive integer. This proved a conjecture of Hayman [10, 12], the case where

/ has finite order having been settled by Mues in [17]. The same conclusion

holds if / is meromorphic in the plane and N(r, 1///W) = o(T(r, f If))
for some k > 3 [8, Theorem 2; see also 7, 9]. We prove here the following

result.

Theorem 2. Suppose that f is meromorphic of finite lower order in the plane
and that ax and a0 are rational functions such that the differential equation

(1.1) y" + axy' + a0y = 0
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has linearly independent rational solutions f and f2. If F(z) = f"(z) +

ax(z)f'(z) + a0(z)f(z) and N(r, 1/fF) = o(T(r, f'/f)), then f'/f is ra-
tional and f and F have no zeros.

Corollary. // / is meromorphic of finite lower order in the plane and

N(r,llff") = o(T(r,f'lf)),
then f(z) = exp(az + b) or f(z) = (az + b)~" with a and b constants and n

a positive integer.

The corollary follows at once from Theorem 2 using [11, p. 76]. Note that
the assumption that (1.1) has a rational fundamental solution set implies that

üj(z) = 0(\z\J~2) as z —► oo and that larger coefficients cannot be allowed

in general, as the example g(z) = sec(yfz), G(z) = g"(z) + (l/2z)g'(z) +

(l/4z)g(z) = gs(z)/2z, shows. In [14] and [15], the author determined all

functions / meromorphic in the plane such that / and /" + axf + aof
have only finitely many zeros, where ax and ao are rational. It seems possi-
ble that the conclusion of Theorem 2 would be true without any assumption

on the growth of / and with ax and ao any rational functions satisfying

a¡(z) = 0(\z\->~2) (in which case (1.1) might not have solutions meromorphic

in a neighbourhood of infinity), but the present proof, which consists of apply-

ing Theorem A to

_ f\(z)-(f'(z)/f(z))fx(z)
K ]     f'2(z) - (f'(z)/f(z))f2(z) '

requires H to be meromorphic in the plane of finite lower order.

2. Preliminaries

A key role in the proof of Theorem 1 is played by the Riemann-Hurwitz

formula (see [20, Chapter 1]): Suppose that D and G are bounded domains of

connectivity m and n respectively and that f.D^G is an analytic function

with the property that, for any sequence (zk) in D, zk tends to the boundary

dD as k -» oo (in the sense that if K is a compact subset of D, then zk e D\K
for all large enough k) if and only if f(zk) tends to dG. Then there exists a

positive integer p such that all values w belonging to G are taken p times in

D, counting multiplicities, and such that m - 2 = p(n - 2) + r, where r is the

number of critical points of / in D, that is, the number of zeros of /' in D,
counting multiplicities.

Suppose now that / is a function meromorphic in the plane with only finitely

many critical values. If R and S are large, any bounded component of the

set {z e C: R < \f(z)\ < S} must be doubly-connected, while any bounded

component of the set {z e C: |/(z)| > S} contains one (possibly multiple) pole

of / and is simply-connected.

Lemma 1. Let n(t) be nondecreasing, integer valued, and continuous from the

right such that n(l) = 0 and n(t) = o(log/) as t -+ +oc. Set

h(r) = j tdn(t).

If à is a positive constant, then the set E(S) = {r > 1 : h(r) > or} has logarith-
mic density 0.
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Proof. Let /(r) be the characteristic function of E(6), so that x(t) — 1 if

/ > 1 and / e E(S) and x(t) - 0 otherwise. Then

Í x(t)/tdt<(l/ô) I h(t)/t2dt = (l/ô) Í l/tdh(t)-h(r)/ôr

<(l/ô)Jr dn(t) = o(logr),

which is precisely what is asserted in the lemma.

The next lemma is part of a special case of the lemma from [16].

Lemma A. Let m(t) be nondecreasing, integer-valued and continuous from the

right, with m(l) = 0 and m(t) = O(t) as t —► +oo. Let M > 3 be a constant.

Then there exists a set EM of lower logarithmic density at least 1 - 3/Af ; that

is,

I  x(t)/tdt>(l-3/M-o(l))logr   asr^+oo,

with x({) the characteristic function of EM, such that, for r e EM and t > r,

we have m(t)/m(r) < (t/r)4M .

Lemma 2. Let f be transcendental and meromorphic in the plane with T(r, f)

= o(logr)2. Then there exist sequences Rv and Sv tending to +oo, nonzero

constants Cv and Dv, and integers mv and nv such that for

(2.1) R„S~X <\z\<RvSv

we have

(2.2) f(z) = Cvzm"(l+o(l))

and

(2.3) f'(z) = Dvz»»(l+o(l)).

Proof. We write f(z) = U(z)F(z) and f'(z) = V(z)G(z) where U and V
are rational functions and F and G satisfy F(0) = (7(0) = 1 and have no zeros

or poles in |z| < 1. We choose a small positive ô and apply Lemma 1 with

n(t) = n(t, l/F) + n(t, F) + n(t, l/G) + n(t, G) = 0(T(t2, f)/logt) = o(log/).
Further, we apply Lemma 2 with M = 100 and m(t) = 2"('). This gives
arbitrarily large r such that

(2.4) h(r)= Í tdn(t)<Sr

and, for t > r,

(2.5) n(t)-n(r)<Milog(t/r),

where A/"i = 400/log2. Since n(t) is integer-valued, (2.4) implies that / and

/' have no zeros or poles in or < \z\ < r. Suppose that

(2.6) ô^r<\z\<ôxl\.

We write F(z) = F\(z)/f2(z) with the f entire and /i(z) = rL>iO - zlaj) »

where the a, are the zeros of / in 1 < |z| < oo , repeated according to multi-

plicity. For z as in (2.6) we have

(2.7) fi(z) = z^'xI^Y\](-lla})Y[i(l-a]lz)Y[2(l-z/aj),
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in which rji denotes the product over all a¡ with |a,| < r and T[2 denotes

the product over the remaining a¡. With £], defined analogously to JfJ1, we

have, using (2.4),

\WAl-a1/z)-l\<exo(Y,\aj/z\)-l

(2.8) < exp(A(r)/|z|) - 1 < exp(ör/\z\) - 1

< exp(<51/4) - 1.

Further, (2.5) gives n(t, 1/f) - n(r, 1/f) < Mx(log(t/r)) for / > r, and we
have

in2(l - z/aj) - 1\ < exp (\z\j™ | dn(t, 1//)) - 1

= exp (|z| J"[n(t, 1/f) - n(r, l/f)]á/t2^) - 1

< exp ( |z|Afi /    log(t/r)dt/t2 J - 1

= exp(\z\Mx/r) - 1 < exp(Afic51/4) - 1

Now if e > 0 is given, we need only choose ô small enough, and (2.7), (2.8),

and (2.9) then give f(z) = Y[x(-l/aj)zn(r'x I F\l + p(z)) fixere \p(z)\ < e for

z satisfying (2.6). Estimating f2 in the same way gives (2.2) and the proof of

(2.3) is identical.

The following is Lemma III of [4].

Lemma B. Suppose that g is meromorphic in \z\ < R, I < r < R, and that

I(r) is a measurable subset of [0, 2n] of measure p(r). Then

±J^log+\g(reie)\de<llR(R-r)-xp(r)(l+log+-^JT(R,g).

3. Proof of Theorem 1

Suppose that / is transcendental and meromorphic in the plane such that

T(r, f) = o(logr)2 and / has only finitely many critical values. By the remark

in the introduction we can assume that / has no Picard value. Let Rv , Sv ,

Cv , Dv , mv , nv be as in Lemma 2. We can assume that, as v -+ oo,

(3.1) \CV\RAA» ^ a, l<a<+oo,

by taking a subsequence and replacing /by 1/ f ,if necessary. We consider a

number of cases.

Case 1. Suppose that a = +00 and mv = 0 for infinitely many v .

Taking a further subsequence if necessary we can assume that

(3.2) lOO\Cv-x\Rmv"_-xx < lc-l < lOO-l\Cu+x\K+x ■

Take a small positive e . Now (3.2) implies that if v is large enough, the circle

|z| = Rv lies inside a bounded component of the set {z: |/(z) - C„| < £|C„|}.

This component contains no multiple point of / and is multiply connected, by

(3.2), which contradicts the Riemann-Hurwitz formula.
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Case 2. Suppose that a = + oo and that mv^0 for all large v .

Then (2.2) implies that the annulus (l/4)Rv < \z\ < 4RV contains a closed

level curve Yv on which |F(z)| = kv = \C„\R™", and this level curve Tv must

be a simple closed curve winding once around the origin. We take p < v such

that lOOk^ <kv and such that the region U lying between Yß and Tv contains

at least one zero of /.

Let Vx be a component of the set {z e U: \f(z)\ < kß} . Since |/(z)| > k^

on YM and r„ , we have \f(z)\ = kl¡ on the boundary dVx, which is contained

in the closure U of U and consists of disjoint smooth simple closed curves.

Let jx be the unique component of dVi which forms the boundary of an

unbounded component of C\Kj, and suppose first that the winding number

n(yi,0) = 0.
Now 7i cannot coincide with T^, since the interior of Tß is bounded,

and so jx does not meet T^ , using the fact that / has no critical values on

\w\ = kß. Thus yx forms part of the boundary of a component V* of the set

{z e U:K„ < \f(z)\ < rc„}. On ÖV* we have |/(z)| = kß or \f(z)\ = kv,

and V* must be doubly-connected, by the Riemann-Hurwitz formula. The
other component y2 of d V* must close in U and cannot coincide with Tv ,

since V* is doubly-connected and since there exist points arbitrarily close to

Tß at which \f(z)\ < kß. Thus y2 cannot meet Yv . Further, on y2 we

have |/(z)| = kv , and y2 forms part of the boundary of a component V** of

the set {z e U: \f(z)\ > kv), on the boundary of which |/(z)| = kv. The

Riemann-Hurwitz formula now implies that V** is simply-connected, which is

a contradiction, since V* lies in a bounded component of C\F**.

This contradiction proves that n(yx, 0) ^ 0. Thus T^ lies in a bounded
component of C\Vx, and dVx must have precisely two components cox and

co2 such that n(cOj, 0) ^ 0, and this is true for every component of the set {z e
If: \f(z)\ < kfi}. If these components are Vlt ... , Vp and if p > 1 , we can

assume that, for each j, V¡ lies in the same component of C\I^+i as Yp . But
then components of d Vi and d V2 together bound a doubly-connected region

on which |/(z)| > kß . This region must contain a pole of / by the maximum

principle, and the fact that it is not simply-connected contradicts the Riemann-
Hurwitz formula. Therefore p = 1 , which is a contradiction since we can

choose v arbitrarily large.

Case 3. Suppose that a is finite in (3.1).

If mv ,¿ 0 for infinitely many v, then since Sv —> oo we can take a subse-

quence and obtain level curves Yv on which |/(z)| = kv —> oo, by considering

f(z) on |z| = RvS*^*, and then argue as in Case 2. We assume henceforth

that mv = 0 for all large v , so that without loss of generality

(3.3) f(z) = l+o(l),       R„S-X <\z\<RvSu.

We also have (2.3), which we write in the form

(3.4) f'(z)=Dvzn>(l+ô(z)),        ô(z) = o(l),        R„ST-x<\z\<R„Sv,

and we can assume that S'(z) = o(l/|z|) for the same range of values of z,

because otherwise we can replace S„ by Sl/2 and apply Cauchy's estimate for

derivatives.



THE MULTIPLE POINTS OF CERTAIN MEROMORPHIC FUNCTIONS 1793

Now if nv < -2 in (3.4), then integration by parts gives, with qv = nv + l,

Ev = Dvq~x, z0 = RVSV , and L„ a constant, the estimates

(3.5) f(z) = Lv+Evz""(l+6(z))- Í El/tq"ô'(t)dt = Lv + Ev zq" (1 + o(l)).

In obtaining the last estimate of (3.5) we have taken the path of integration

to be the straight line segment from zq to |z|, followed by part of the circle
|f|H*|.

If «„ = -1 in (3.4), then the integral of f'(z) around the circle |z| = R„

will be Dv(2ni + o(l)), which is clearly impossible. Finally if nv > 0 in (3.4),
we take zq = RVS~X and obtain (3.5) again.

Again we consider cases.

Case A. Suppose that |1 - L„| > (1 /4)\Ev\Rqv" for infinitely many v .

In this case, since qv ^ 0 we find, using (3.3), that

f(z)-l = (Lv-l)(l+o(l)) = o(l)

either on RVS~X < \z\ < RvSyX/1 or on RVSXJ2 < \z\ < R„SV, and we can

apply the reasoning of Case 1 to g(z) = l/(f(z) - 1).

Case B. Suppose that |1 - L„| < (1 / 4)\Ev\Rl" for all large v .
Again, since qv / 0, we can obtain, on a smaller annulus formed as in Case

A, the estimate f(z) - 1 = Evzqv(l + o(l)), and on these annuli Evzq" —> 0

uniformly, by (3.3). Thus we may apply the reasoning of Case 2 to g(z) =

l/(f(z)-l).

4. Proof of Theorem 2

Let fx and f2 be linearly independent rational solutions of (1.1), so that

the Wronskian W(f\,f2) = W is also rational. Now (f2/f\)' = Wf~2 =
dzq~x(l + o(l)) as z —> oo, for some nonzero constant d and integer q, and

q cannot be zero, since f2/f is by assumption rational. Therefore we may

assume that f2(z)/f(z) = zq(l + o(l)) as z —> oo and that q is positive.
Assuming that / and F are as in the statement of Theorem 2, and that

N(r, 1/fF) = o(T(r, f'/f)) and /'// is transcendental, we set

(4.1) H(z) = Kx(z)/K2(z),        Kj(z) = f'j(z)-fJ(z)f'(z)/f(z),

so that H is transcendental of finite lower order.

Now all but finitely many poles of H are zeros of K2 which are not zeros or

poles of /. Further, K)(z) = -fj(z)F(z)/f(z)-Kj(z)(ax(z)+f'(z)/f(z)), so

that at a zero z of K2 with z large and with multiplicity m > 2, F(z) must

have a zero of multiplicity m - 1. Thus N(r, H) - N(r, H) < N(r, 1/F) +
O(logr) = o(T(r, H)), using (4.1). Moreover,

H'(z) = -W(z)F(z)/f(z)K2(z)2,

so that zeros z of H' with z large can only occur at zeros of F or at simple

zeros of /, which implies that N(r, 1/H') = o(T(r, H)). We may therefore

apply Theorem A to g(z), where g(z) is either H(z) or l/(b - H(z)), for

some constant b, g being normalized so that ¿(oo, g) = 0.

We take a small positive constant e and a sequence (rk) suchthat r0 is large

and 2rk <rk+x < 4rk for each k > 0 and such that the circles |z| = rk do not



1794 J. K.. LANGLEY

meet the exceptional set Co of Theorem A and further such that T(rk , f'/f) <

0(T(rk , /)) for each k . Now L2(r) = L2(rk) + o(l), uniformly for rk < r <

rk+l. For each integer k > 0 we choose 0£ in [L2(rk) -n/16p, L2(rk)+n/16p]
such that the straight line segments z = rexp(/(0£ + jn/p)), rk < r < rk+l,

0 < j <2p - 1, do not meet Co . Obviously, | cos(p(9¡. - L2(rk)))\ > 3/4. For
each integer j with 0 < j <2p — 1 we then choose Tj to be the union of the

straight line segments z = r exp(i(6*. + jn/p)), rk < r < rk+i, k > 0, and the

arcs z = rk exp(/0), \6 - L2(rk) - jn/p\ < n/2p - e . On T;, Theorem A gives

\g'(z)\ < \z\~3N , where N is a large positive integer, so \g(z)—Aj\ = 0(\z\~2N),
for some constant A¡. In fact a much stronger estimate is proved in [5], but this

suffices for our purposes here and gives either \H(z)-Bj\ = 0(\z\~2N), for some

constant Bj, or 1/H(z) = 0(\z\~2N). Thus either G(z) = H(z)f2(z)/f(z) or

G(z)~x is 0(l/|z|) on r7-, and in either case we obtain there f'(z)/f(z) =

0(l/|z|), so log+ |l//(z)| = 0(log|z|). Now Lemma B implies that for some
small constant 5, which satisfies ô = 0(e log( 1 /e)), we have, for each k > 0,

T(rk,f)<(l+o(l))m(rk,l/f)

< (ô/2)T(2rk ,l/f) + 0(logrk) < ÔT(rk+i ,f),

so, for some positive constant c, independent of ô , and for rk < r < rk+x ,

T(r, f) > T(rk,f) > ô-kT(r0,f) > ô~2cX^T(ro, f) > rd^T(r0,/),

which contradicts the assumption that / has finite lower order and proves

Theorem 2.
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