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(Communicated by Palle E. T. Jorgensen)

Abstract. We prove that every full symmetrically normed ideal of operators

on a Hubert space is realizable as the set of completely bounded maps between

two homogeneous operator Hubert spaces, with the cb. norm equivalent to

(but in general not equal to) the symmetric norm. We show that one can have

equality of the cb. norm and the symmetric norm if one leaves the category of

operator spaces and passes to a slightly larger category.

1. Preliminaries

In Gohberg and Krein's text Introduction to the theory of linear nonselfadjoint

operators, the reader may find a nice exposition on the theory of symmetrically

normed (s.n.) ideals, and since we will be dealing with this theory extensively,

we have adopted their text as a reader's companion to this article. Consequently,

we have attempted to duplicate their notation wherever possible. We also will

frequently use objects that are not defined here but whose definition may be
found in [3].

Let %* be a separable Hubert space , and let B(%?) be the Banach algebra

of operators on %?. In our exposition we will need the following elementary

piece of folklore, whose proof we leave to the reader. If £ is an arbitrary s.n.

ideal, we define

£' = {Y£ B(MT)\XY £ Wx for all X £ €}.

We call € a full s.n. ideal in case €" = C.

1.1. Lemma. Let <P be an s.n. function. If <ï> is equivalent to the maximal s.n.

function, then £'$ = B(%?). If Q is not equivalent to the maximal s.n. function,
then €'9 = Co-.

In addition to the content of [3], we need to assume that the reader is fa-

miliar with the basic ideas and definitions of abstract operator spaces and their

completely bounded (cb.) mappings. These basics may be found in [1] or [2].

The essence of our paper is that, as a set, every full symmetrically normed ideal

of operators on a Hubert space is realizable as the set of completely bounded
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maps between two operator Hubert spaces. However, it may happen that the

symmetric norm itself is not realizable as a cb. norm, even though it is equiv-

alent to one. Consequently, although we are primarily interested in operator
spaces, we wish to introduce a larger category of matricially normed spaces

where the symmetric norm will be realizable as a cb. norm. Given a matrically
normed space (Sf, || • ||„), we will say that (Sf, || • ||„) is a matrix cross normed

space (an m.c.n. space) if it is a matrix normed space that gives rise to a cross
norm on Sf ® M„ for each zz, when M„ is regarded with the Hubert space

operator norm. We will refer to (Sf, \\ • \\x) as the base space. The reader will

verify that all operator spaces are m.c.n. spaces, but not conversely. In partic-
ular, if ^roj denotes the m.c.n. space induced by the projective tensor norm,

then a calculation reveals that \\e ® Exx + f <g> E22\\ = \/2 whenever e and
/ are orthogonal unit vectors. Thus ^roj is not an operator space. We also

wish to point out that the class of m.c.n. spaces is considerably smaller than

the class of all matrically normed spaces, as defined in [2]. Indeed, all of the
Lp-matricially normed spaces discussed there fail to be m.c.n. spaces as soon as

p < oo . In what follows we will be considering many distinct systems of matrix

norms over a common base space. Consequently, please remember that we will

henceforth use subscripts on norms to distinguish different systems of matrix

norms, instead of subscripts indicating dimension as they did in this paragraph.

It sometimes happens that an operator space Sf has the property that every

bounded map T: Sf ^> Sf is completely bounded and |T| = |ÜT|cb . For exam-

ple, ^rntn and ^niax have this property (see [1] for the definition of the minimal

and maximal operator matrix norms on Sf). Following Pisier's terminology in

[6], we will say that an m.c.n. space is homogeneous if it has this property, and

we will say that the m.c.n. space Sf is Hilbertian if the base space is a Hubert

space.
Let %? be our separable Hubert space, and assume that %?x and %%. are two

homogeneous m.c.n. spaces with base %?. We denote the space of completely

bounded maps from %\ into %f2 by QB(%[ ; ßT2).

1.2.   Proposition. The space QB(%?X ; %?2) is an s.n. ideal in B(%?).

Proof. Let X £ CB(X[ ; XÏ), and let A , B £ B(MT). If we view

A£CB(J%;jrx),     X £CB(ßrx;ßr2),     and   B £ QB(%f2; ¿Pf),

then the inequality

|^ß|cb < M|cbmcb|fi|cb = Ml \xu\b\

follows from homogeneity.

Assume that X is a rank one operator, say X(f) = (f, g)h for all / e ff.

Let fj £ %? and let C = ((f¡, g)). Since %?2 is an m.c.n. space, we have

ll(^(JÎ7))ll = l|A®C|| = ||C|| ||A|| <||C/¡y)|| II*« ||A||.

It follows that Hilo < ||g|| ||*|| = ||*H. Since (CB(ß/[ ; MT2), ||.||cb) is complete,
we are done.   □

The following definition will allow us to view any s.n. ideal as a space of

completely bounded maps. Let <I> be an s.n. function, and let ß^mcn be an

arbitrary homogeneous m.c.n. space. We define a new system of matrix norms
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on & by

Ilt/iy)ll*,mcn=    SUP   ||(Tollmen .
|r|*<i

Thus given (ff) £ Mn(ßF), the new norm is obtained by thinking of (fij) as an

operator from £$, to A/„(^cn). Actually, the same number is attained if one

merely takes the supremum over all finite rank T with |T|<d < 1. It is easily

verified that || • ||<j>,mcn is a matrix cross norm, and the resulting m.c.n. space

is denoted ^o.mcn • If <^mcn is an operator space, then so is ^*,mcn • Finally,

note that ^q>jmCn is also homogeneous.

1.3.   Proposition. If O is any s.n. function and %*mcn is any m.c.n. space, then

-™<S>\ , men — ^<t>, min — ^min

and

lfl-<baa , men — '"■men •

Proof. We will prove that ßt%x t mcn = ^,in and leave the remaining (elementary)

equalities to the reader. Recall that every linear map defined on €x attains its

norm on rank one elements of €x. It follows that for (fij) £ Mn(Sf) we have

II (¿y) II*,, mcn=   SUP   ||(77;7)||mcn =       SUP       \\((fj , A)g)||mCn = \\(fij)\\mm •     °
|T1l<l 11*11,11* II <1

Proposition 1.3 allows us to think of ^,mCn as a family of interpolating

m.c.n. spaces, starting at ^mXn and ending at ¿?mCn . Within this setup there is a

linear interpolation of ^mXn to ^mCn , obtained by restricting the s.n. functions

to the family <PP , for 1 < p < oo . We will see this method of interpolation is

very different from the method recently introduced by G. Pisier in [6].

2. Homogeneous Hilbertian operator spaces

We will be interested primarily in the spaces ^o,max • The reader will un-

doubtedly see places in later sections where more generality may be obtained

by substituting in an arbitrary homogeneous Hilbertian operator space for the

role played by ^mdiX.

2.1. Proposition. The s.n. ideal CB(ßt"mXn ; ^max) equals €x as a set and, con-

sequently, the c.b. norm on CB(^min ; ^ax) is equivalent to the trace norm.

However, this c.b. norm is not equal to the trace norm.

Proof. It suffices to prove that the c.b. norm and the trace norm are equivalent

on the finite rank positive operators. Assume that

T = diag(a0, "i,..., a„_i ,0,0,...)

relative to an orthonormal basis {e¡}°l0 > anc* let U be the unitary operator

defined by
_i mod zz     if z < zz,* = {fM

Ue,
if i > n.

If /„ is the projection onto the span of {ej}"I0l, then

|7'|1|/„|cb=tr(r)i/„|cb

= |T+L/-17'í7 + --- + í7-(',-1)rC/("-1»|cb<zz|r|cb.
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By [5, Theorem 2.16], we have f < |/„|cb . It follows that

Hi<2|.|cb.

Since the trace norm dominates all other symmetric norms, we have established

the equivalence of these two norms.

The fact that these norms are not equal also follows [5, Theorem 2.16], since
with /„ as above, we have

|/«|cb<"/V2< |/„|,.    G

Given an s.n. function O, let Ocb denote the s.n. function obtained from

the s.n. ideal C5(^>jmax ; Jrnax) •

2.2. Theorem. Let <ï> be an arbitrary s.n. function. Then CB(<%®<m¡lx; J^ax)

coincides with €'¿ as a set, and <I>cb is equivalent to <I>. Furthermore, the

s.n. ideal CB(%min; ^>,max) coincides with €'¿. as a set, and the c.b. norm is

equivalent to \ • |<p*.

Note that ideals of the form CB(^¡ ; %?2) are always/«// (in the sense dis-

cussed just before Lemma 1.1). It is a consequence of Lemma 1.1 that the only

s.n. functions for which £® fails to be full are those that are equivalent to the
minimal s.n. function, in which case <£$ is the ideal of compact operators and

€'¿ is B(!%?). The double primes that appear in the statement of Theorem 2.2
are needed to take care of the case when either i> or O* is equivalent to the

minimal s.n. function. In all other cases we have <£$> = €'¿ so the double prime

may be removed.

Proof. First note that 4>cb < O. This may be seen by assuming |T|<d < 1 and

proving \T\<¡,cb < 1. Thus assume \T\® < 1 and ||C/î;)||<i>,max < 1. It follows

that

IITOOIImax < 1
so that T is completely contractive; i.e., |r|<j>cb < 1. We deduce from this that

ö-<j> Ç L,B(aZ<[> max ; .«max) ■

(Recall the relationship between £'$ and ÖV given in Lemma 1.1.) Now

assume that T £ Cß(^>>max; ^max) • For any S £ €'& with |5|*. < 1 and

any R £ €0 with \R\® < 1 we have \RS\X < 1. It follows that, as an element

of CB(^m[Il ; ^max), RS is completely contractive. Since this is true for every

such R we see that

\\(Sfj)U,^=   SUP   ||(^/¡7)||max<||(^)llmin-
|Ä|»<1

Thus S is completely contractive as a map in CB(3mXn; ^o>>max) • It follows

that TS is completely bounded from ^in to ^m3x ; thus TS £ £1 by Propo-

sition 2.1. Since S was an arbitrary element of £$ we have T £<t'¿.

We omit the proof of the second assertion, which proceeds similar to the one

just given.   D

For contrast, we have the following two theorems. The proof of the second

one follows from the first, in much the same way we deduced Theorem 2.2 from

Proposition 2.1.
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2.3.   Proposition. The s.n. ideal CB(%fmm; ̂ roj) coincides with the ideal of

trace class operators, and the trace norm equals the cb norm on CB(^mm ; ^roj) •

Proof. Since the trace is the maximal symmetric norm, we have

€x ç C5A¡„ ; ̂ roj) ■

Thus we need only prove that

\t\i < mcb

for all finite rank operators T. Since both norms are unitary invariant, we

may assume that T is positive. Let {ex, e2, ... , en} be an orthonormal set of

eigenvectors of T such that Tx = 0 for all x £ {ex, e2, ... , e„}L and assume
Te i = aie i (for i = 1,2, ... , n). Define a bilinear map

x:J^x Mn -+&

by
n

ï(/\ (a¡j))= Yl aij(f,ej)ei.
i,j=i

It follows that \\x(f, (a¡ < (a,j)\\ for all / £ %f and (atj) £ M„ . Thus
x may be used to define a contraction f on the projection tensor product via

*fe/i®^]=ET0!^')-
We see that

1=1

1).   This

<

= \\(TexTe2---Te„)\\v^<\TU

(the last inequality follows from the fact that  \\(exe2 ■■■Cn)\\min

completes the proof.   D

2.4. Theorem. Let <S> be an arbitrary s.n. function. Then CB(^proi) coin-

cides with <t'¿, and the c.b. norm coincides with | • |<j>. Furthermore, the s.n. ideal

CB(l%min ; ^5>,proj) coincides with £'¿, and the c.b. norm coincides with | • |<d« .

The connection between operator ideals and families of completely bounded

maps lets us carry results from the former field to the latter. The following two

corollaries are samples.

2.5. Corollary. There exist homogeneous Hilbertian operator spaces %[ and

%f2 with the property that CB(%¡ ; fflf) c €<» , but the finite rank operators are

not dense (relative to the c.b. norm) in CB(%?X ; %?2).

2.6. Corollary. The space CB(%?X; %f2) is separable if and only if the finite rank
operators are dense in CB(ßfx ; ßif2).

To prove the first corollary, let d> be an s.n. function for which £& has the

stated property. Then CB(^tmax ; ^max) also has the property. Corollary 2.6

follows from [3, Theorem 6.2] (see pp. 89-90 there).
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We would like to point out a consequence of Proposition 1.3; the s.n. function

induced by the c.b. norm on CB(ß^mXn ; %max) equals (Oi)cb. Thus, in the

terminology of [5], the number

<*(h(n))
is encoded in the function (Oi )cb . In fact, if Ç„ is the sequence that assigns the

constant value 1 for the first zz terms and is constantly zero for all remaining

terms, then

a(l2(n)) = (*, )cb(C„).

3. A LATTICE VIEWPOINT

Given an operator space Sf, we let Sf* denote the operator dual of Sf (see

[1]). Let &r denote the family of homogeneous Hilbertian operator spaces

that have the common base %?. It is easy to verify that the operator dual of

a space in §> is again in $#■. If %x £ 3> (X £ A) are given, then we may

define new matrix norms as

IK/;7)IIV^ = sup ik^oiu.
v¿  x     AeA

It is easily verified that the resulting space, which we denote V/ ̂ » is in £r .

Similarly, we may define the meet of the family {%ff\ by

A^=(V^*)*-
It follows that 3> is a complete lattice with these lattices operations. If we

have ^^efo, then we will write X[ < %i if HC/y)lli < \\(fu)h for all
(fij) £ Mn(%?) and all zz. Note that V^ is the smallest element of &r bigger

than the family {<£■[} , and [\ß?x is the largest element of g> smaller than the

family {%[}.   .
Let & be the family of all s.n. functions. It is clear that 6 is also a complete

lattice, where the join of a family of s.n. functions is the smallest s.n. function

which dominates the family. The meet may be defined using conjugate s.n.

functions (just as we did above for homogeneous Hubert spaces), or we may

simply take the join of the set of lower bounds of the family. We let 6cb denote

the set of s.n. functions <P for which there exist a homogeneous Hilbertian

operator space ^o such that | • |<j> is equal to the cb norm on CB(ß% ; ^max) •

3.1. Lemma. Assume that í> £ 6cb and %ó £ &r is a space for which \ • |<p is

the c.b. norm on CB(3q ; Jrnax) • Then we have

^<P,max -i ^0

and i> = <Pcb. In particular, for any <P e 6 we have (Ocb)cb = Ocb.

Proof. Assume that ||(./}/)||o < 1 • Then for any complete contraction T we

have \\(Tfij)\\màx< 1, so

Ill/z;)lkma* =   sup  ||(7V;,)|U<1.
imi«<i

It follows that ^>,max < ^0 •

As in the proof of Theorem 2.2 we have Ocb < O. To see the opposite

inequality, assume that \T\®cb < 1. Since

^<I>,max -^ ^0 -^ "«max
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and we are assuming T is completely contractive when viewed as a map from

<^*,max, to ^rnax, it follows that T is completely contractive when viewed

from Jg to Jrnax, i.e., that \T\<¡> < 1. Thus we have O < <Pcb. The equality

(4>cb)cb = <Pcb follows from the fact that <Dcb 6 6cb for all <S> £ G .   D

3.2. Proposition. // <P e 6, then

4>cb-Vi^ecbP*'<<*>}•

Thus we have that 6cb is closed under arbitrary join.

Proof. If ¥ £ 6cb and ¥ < <D, then ¥ = »Pcb < <Dcb and

Vi^eÔebl^^O}^^.

The opposite inequality follows from the fact that <Pcb e{*r'e6cb|lí'<í>}.   D

3.3. Theorem. If Q>X£G, then

V ^*A , max = ^yy «^ , max ■

X

Proof. We will use the fact that ¥ < <t> implies ^o,max < ^;max • Let O be

the s.n. function induced by the c.b. norm on CB(V^*A,max ; ^max) • Since

'"^t>x . max  —   V       ®i ' max '

we have

1> < (<^)cb < ®l

for all X. It follows that <P < /\x <P¿ < 0¿ and

^<S>x , max — ^ A  O,,, max —     *. max -i  y     *i >max '

(The rightmost inequality follows from Lemma 3.1.) Since the join is the small-

est space bigger than all the Jo;, max > we conclude that

^A¿*¿ , max = <**<I>, max =   Y ^*i , max •      LI

We wish to illustrate Theorem 3.3 with the following example. For 0 < r < 1

let *¥r be the s.n. function defined on k by

¥,(£) = £>£,.

n

(See [3, p. 145].) It is not hard to see that*?, is equivalent to Ooo for all

0 < r < 1. It is also apparent that V *Fr = 0(. It follows that the spaces

%*v,, max are all completely isomorphic to ß^mXn and

V ™¥r, max = <^max •

r

It is not hard to modify this procedure to obtain an arbitrary homogeneous

Hilbertian operator space as the join of spaces completely isomorphic to %fmm .

It follows that, given any positive number r, it is possible to find a homogeneous

Hilbertian operator space %o whose c.b. distance to J^,jn is a finite number

greater than r (see [5] for a definition of c.b. distance).
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The results above give a picture of where the spaces <^o,max live, relative to

other Hilbertian operator spaces. If O € 6cb, then there are many candidates

^o £ &r for which <P will be the s.n. function corresponding to the c.b. norm

on C5(Jo ; <^max) • It follows from Lemma 3.1 that %®tmax is the smallest

such space. Since the operator dual reverses an inequality relating two spaces,

we may also note that %£ max is the largest space among the spaces %o that

have <1> as the s.n. function induced by the c.b. norm on CB(%mm \ <%o) ■

A. The central spaces

We will say that a homogeneous Hilbertian operator space ^o is a central

space if the sets CB(ß%nin ; %o) and CB(%ó \ ^max) both coincide with the set

of Hilbert-Schmidt operators. We let ß%oX and ^0w denote column and row

Hubert space (respectively). It is known that ß%oX and <^0w are not only central

spaces, but as s.n. ideals

€2 = CB(<%mm ; ^oi) = CB(^coX ; ^m¡ÍX)

= Cd (èrZmva ; ¡«row) = Lxj(^ZVow ; ¡"max)

isometrically. (See [4] for an account of this.)
Recall that we denote the Hilbert-Schmidt norm by | • I2, and the corre-

sponding s.n. function <J>2 is the 2-norm. It follows from Lemma 3.1 that

C5(^>2imaX; ^rnax) is also the s.n. ideal of Hilbert-Schmidt operators. Thus

^2,max is a central space by Theorem 2.2. Note that Theorem 2.2 only tells

us that Cß^^mjn ; ^rj>2 max) is equal to €2 as a set, with an equivalent (but

in general not equal) norm. In fact, we will soon see that the c.b. norm on

CB(3min; ^o2,min) cannot equal the Hilbert-Schmidt norm.

4.1.   Proposition. Assume the spaces %fx and ^2 are central spaces and

ycx ^ ¿/¿o ̂  ¿/¿i •

Then %?o is also central.

Proof. If T is Hilbert-Schmidt, then T £ CB(ßTmin ;ß?2). The assumed in-

equality then implies T £ C5(^min ; Jg). Thus <£2 C CB(JTmin ; J?ó). Con-

versely, if T £ CB(^mXn ; <%ó), then the inequality gives us T £ CB(<%min ; %?x)

whence T is Hilbert-Schmidt. Thus €2 = CB(^in ; %o) (as a set), and the

equality of sets €2 = QB(%o \ ^max) is proven similarly.   D

Since the operator dual of a central space is again central, Proposition 4.1

tells us that the interval of spaces

L^O^max » ̂ <I>2,maxJ ~~ {"O^fy , max ^ ^0 -i ^<t>2, max J

consists of central spaces. Lemma 3.1 and the duality relationship between $fcoX

and ^ow show that %fmX, J^w £ [■%q>2 ,max ; ^rj>*2 max] > whence we conclude that

■^col v <^row , <«col A ^row t L^4>2, max > ̂ cj>2 , max! •

In [6] Pisier construct a homogeneous Hilbertian operator space %?oXy that is

self-dual, and it is seen in this paper (Corollary 2.6 of our version) that

¿*Zc0l A .«row 5: "^oh S <^col » «''row ,

so ^h is central.
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At first glance, one might guess (as we did) that

qv _  qa>    A   ow
^®2 > max "~ ^col ' ' ■«row •

We prove that these matrix norms are not completely boundedly equivalent by

computing the norm of an zz x zz matrix (e¡j), with the doubly indexed set

{e¡j} forming an orthonormal basis. A direct computation reveals that

II(<?o)IIjCv^ow = y/n.

Using the fact that J£ol V £%ov/ is the operator dual of <%^oX A £%ov/ we have

n = \\((ekl , eij)niLkl={)\\ < \\(eij)\Wcol^owy/ñ.

It follows that y/ñ < ||(e,7)ll^,A^ow . But it is easy to see that ||(ey)lk ,max < 1 »

since if T is a Hilbert-Schmidt contraction one has

£ lir*y||2<i.
¡■7=1

We mentioned earlier that although ßt^imzx is a central space, it cannot

be that the c.b. norm on CB(^min; ^$2,max) is equal to the Hilbert-Schmidt

norm.  We wish now to justify this assertion.  If it were equal, then ß%£

would have the property that the c.b. norm in both C5(Jm¡n ; ^ 02,max^ and

equal the Hilbert-Schmidt norm. Thus every space in the

% max] » would have this same property. Our contradiction

cut Sf* ■ SP
^D\<*<t>2,m¡ix> "^max

interval [J%>2,miix;

arises by observing that Pisiers space ^h cannot have this property. Indeed,

assume that %? is zz dimensional and {e¡} is an orthonormal basis of %?, and

let ß be the c.b. norm of the identity map in CB(HmXn ; J£h) ■ Then

Ai

a,

ß= sup{||£ev

= sup 11|^2 Ai

-sup i E^' ® B'

= a(/2(zj))'/2<^.

oh I

1/2

1/2

At5>« < i}

}
|y>,®£,   <il
I ̂ ~^ min J

(The second equality may be found in the first section of [6], and the last

equality follows from [5, Proposition 2.3] and its preceding remarks.) Thus

the Hilbert-Schmidt norm does not agree with the c.b. norm on the identity. A

little more thought will convince the reader that the s.n. functions induced by

the c.b. norms on CB(ßt?mm ; ^h) and CB(^ ', ̂ ax) are the same (because

of duality relations) and

ß = a(l2(n))x'2.
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