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UNIQUENESS AND NONUNIQUENESS
OF THE POSITIVE CAUCHY PROBLEM

FOR THE HEAT EQUATION ON RIEMANNIAN MANIFOLDS

MINORU MURATA

(Communicated by Peter Li)

Abstract. We investigate a uniqueness problem of whether a nonnegative so-

lution of the heat equation on a noncompact Riemannian manifold is uniquely

determined by its initial data. A sufficient condition for the uniqueness (resp.

nonuniqueness) is given in terms of nonintegrability (resp. integrability) at in-

finity of -1 times a negative function by which the Ricci (resp. sectional)

curvature of the manifold is bounded from below (resp. above) at infinity. For

a class of manifolds, these sufficient conditions yield a simple criterion for the

uniqueness.

1. Introduction

Widder [W] established in 1944 that a nonnegative solution of the heat equa-

tion on Rn is determined uniquely by its initial data. This uniqueness theorem

was subsequently extended to parabolic equations on Riemannian manifolds

(cf. [Ar], [Az], [AT], [Cha], [D2], [Dod], [Don], [Fri], [KT], [KL], [LY], [MT],
[M3,4,5], [N], [Su]). Among others, Karp-Li-Yau ([KL] and [LY]) showed that
if Ricci curvatures on a geodesic ball of radius R in a complete Riemannian

manifold M are bounded from below by -CxR2 - C2 , where Cx, C2 are
positive constants independent of R, then there holds the Widder uniqueness
theorem to the heat equation on M. On the other hand, Azencott [Az] implic-

itly showed in his study of conservation of probability that if M is a simply

connected analytic complete Riemannian manifold whose sectional curvatures

on a geodesic sphere of radius R are bounded from above by -CR2+e for

some positive constants C and e , then the Widder uniqueness theorem to the

heat equation on M does not hold.

In this paper we give a necessary and sufficient condition for the Widder

uniqueness theorem to the heat equation on a noncompact Riemannian mani-

fold to hold.
Let M be an zz-dimensional (n > 2 ), connected, C°° , noncompact, com-

plete Riemannian manifold without boundary. Consider a nonnegative classical
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solution of the Cauchy problem

(1.1) (dt - A)u(x, t) = 0 in    Mx(0,T],

(1.2) u(x,0) = uo(x)        on    M,

where A is the Laplace-Beltrami operator for M, dt = d/dt, and T is a

positive constant. We say that UPH (uniqueness of the positive Cauchy problem

for the heat equation) holds for M when any two nonnegative solutions u and

ü of the heat equation (1.1) having the same initial value are identically equal

on M x [0, T] ; note that no global conditions are imposed on solutions.
The purpose of this paper is to point out how curvatures of a noncompact

Riemannian manifold determine whether UPH holds for it or not.
In order to state our main results, Theorems A, B, and C below, we need some

more notation. Let TPM be the tangent space to M at a point p in M, and

UpM = {£ 6 TPM; |¿;| = 1}. Let BP(R) be a geodesic ball of radius R centered
at p in M : BP(R) = {q £ M; d(p, q) < R}. Denote by K(X, Y) the
sectional curvature of a plane spanned by linearly independent tangent vectors

X and Y, and by Ric(X) the Ricci curvature in the direction X.

Theorem A. Suppose that K(R) is a positive continuous increasing function on

[0, oo) such that for any R > 0

(1.3) inf{Ric(Ç) ;  Ç £ UqM, q £ BP(R)} > -K(R).

If
dr

max(y/W), r)

then UPH holds for M.

In the following theorem we shall consider a solution / of the initial value

problem

(1.5) f" = k(r)f       in   (0,oo),

(1-6) /(0) = 0,    /'(0) = 1,

where k is a continuous function on [0, oo).

Theorem B. Assume that the exponential map at a point p is a diffeomorphism
from TPM onto M. Suppose that k(R) is a continuous increasing function on

[0, oo) such that for any R > 0

(1.7)
-k(R) > sur>{K(X, y(R;q));   X £ UqM, q £ dBp(R), < X, y(R ; q) >= 0},

where y(t;q) stands for the shortest normal geodesic joining p and q. Assume

that k(R0) > 0 for some Ro>0 and the solution f o/(1.5)-(1.6) satisfies

(1.8) /> 0 in (0, oo),        lim/(r) = oo.

(1-4) f

If
dr

(1.9) fJro  Vk(r)

then UPH does not hold for M.

< oo,
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(1.11) f

The following theorem, which is a direct consequence of Theorems A and B,

gives a necessary and sufficient condition for UPH to hold for M belonging to

some class of Riemannian manifolds.

Theorem C. Suppose that M is simply connected. Assume that there exist a point

p in M, positive constants a, b, and a positive continuous increasing function

k on [0, oo) such that for any R > 0, q £ dBp(R), and X, Y £ UqM with
(X, Y) = 0,  the sectional curvature K(X, Y) satisfies

(1.10) -bk(R) < K(X, Y) < -k(R) < -aR2.

Then UPH holds for M if and only if

r0°    dr

-i  VW)
The rest of this paper is organized as follows. Theorems A and B are proved

in Sections 2 and 3, respectively. In Section 4 we shall apply Theorems A and B
to a rotationary symmetric Riemannian manifold M, and show (see Theorem
4.1) that UPH holds for M if and only if -1 times the radial curvature of
M satisfies (1.11). In constructing examples the theorem there yields a useful

method. In Section 5 we shall give concluding remarks.
The author thanks Yoshiaki Maeda and Hisao Inoue for helpful conversa-

tions.

2. Proof of Theorem A

For the proof of Theorem A we make use of a neat uniqueness theorem of

Grigor'yan extending that of Täcklind for the heat equation on R" (cf. [T]).

Lemma 2.1 ([G, Theorem 2]). Let u be a solution o/(l.l)-(1.2) with uo = 0.

Assume that for any R > 1

(2.1) I  dt I     u(x,t)2dV(x)<CeRp{R),
Jo        Jbp(R)

where p(R) is an increasing continuous positive function such that

dr

P(r)

Then u = 0 on M x [0, T].

Proof of Theorem A. Let p(x, y, t) be a minimal fundamental solution to the

heat equation on M (cf. [Cha]). Then

(2.3) v(x,t)= [ p(x,y, t)u0(y)dV(y)
Jm

is a solution of (1.1)—(1.2) satisfying 0 < v < u on M x [0, T].   Thus it
suffices to show that a nonnegative solution u of (1.1)—(1.2) with «o = 0 must

be identically zero on M x [0, T]. Suppose that m is a nonnegative solution

with zero initial data. We see that a function U(x, t) on M x [-1, T] defined

by
(0 on M x [-1,0],

[X'  '     \ u(x,t)      on A/x[0, T]

/e T7^=°°-
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is a nonnegative solution of (1.1) with (0, T] replaced by (-1,7]. Thus the

proof of Theorems 1.2 and 2.1 of [LY] shows (let the constant a there be 4)

that there exists a positive constant Cx such that

r       ty^    , J' + 5+!V"
u(x, t)<u(p, t + s)l    t+l    j

(2.4) x exp | d{p'sX)   + Cxs[K(2R) + ± + y/K(2R)]j ,

X£BP(R),   R>1,   0<t<t + s<T.

Put J(R) =.max(K(R), R2). Since sup0<T<r u(p, t) < oo , there exist pos-

itive constants C and zzz such that

(2.5)

u(x, t) < Cexpf— + zn2/(2i?)sj ,    x £ BP(R),   JR > 1,   0<t<t + s<T.

Fix Ô such that 0 < 6 < T. We claim that

(2.6)

u(x, t) < Cexp ([2m + -¿]Ry/J(2R)\ ,    x£Bp(R),   R>1,   0<t<T-S.

When ô > R/myJJ(2R), we get (2.6) by putting 5 = R/myJJ(2R) in (2.5).
When ô < R/myJJ(2R), we have

^- + m2J(2R)S <^- + mRy/J(2R) < Q + m\ Ry/J(2IV).

Thus we get (2.6) by putting s = ô in (2.5). This proves the claim. On the

other hand, Bishop's volume comparison theorem (cf. [Sa] and [Cha]) yields

(2.7) voKB^Kœn-ij^^smb^r^      dr

< C2 exp(y/ñ^ÍRy/K(2R))

for any R > 1, where ojn-i is the area of the (zz - 1)-dimensional unit sphere

and C2 is a positive constant independent of R. Combining (2.6) and (2.7),

we obtain

/      dt [      u(x,t)2dV(x)
JO JBpiR)

< C2C2(T - ô)exp ([Am + | + y/n~^ï]RyJJ(2R)\

for any R > 1. This together with ( 1.4) and Lemma 2.1 shows that u = 0

on M x [0, T - S] ; which proves Theorem A, since ô can be arbitary small.

Q.E.D.

3. Proof of Theorem B

In this section we prove Theorem B almost along the line given in [M5]. In

proving it we make use of a comparison theorem due to Bishop, Rauch, etc.
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(cf. [Cha], [Ka], [Sa]), and exploit a method developed in connection with

nonconservation of probability (cf. [Az], [Dl], and [Kh]). The proof is divided

into several lemmas; among which Lemmas 3.1 and 3.2 below play a technically

crucial role.
Let k(r) be the function given in Theorem B, and f(r) the solution of

(1.5)-(1.6). Put F = f'/f.

Lemma 3.1. There exists a positive constant R> Ro such that

(3.1) infF(z-)>0,
r>R

(3-2) /'Jr

*> dr
< oo,

f^2>0.

F

*F(r)

Proof. We have from (1.5)

(3.4) F' + F2 = k       in   (0, oo).

By (1.8), there exists R > R0 such that f(R) > 0 and f'(R) > 0. Let g be a
solution of the initial value problem:

g" = k(R)g    in   (R,oo);        g(R) = f(R),    g'(R) = f'(R).

With G = g'/g,

(F-G)' + (F + G)(F-G) = k-k(R)>0    in   (J?,oo),        (F - G)(R) = 0.

Thus F > G on [R, oo). Since lim,._00 G(r) = y/k(R), this implies (3.1). We
next claim that

(3.5) I+l(^)'<-|       i„   e*,»).

By (3.4),

LiL   I   -L
kF2 + k ~ F2'

When F' > 0,   F < yfk; and so

l_        (I     fF^_\     J_     JT
F~t [k + kF2) - y/k + F*'

When F' < 0, ' l/F < l/Vk; and so

J_     im'__i_     F      2     ]_     _2_
F + 2VF2J:"F     F3 ~ F     F3<y/k'

This proves the claim. Integrating (3.5) from R to 5" we have

(S *L    I (_L 1     A < /52fifr
iÄ   F +2W     F(R)2)-JR   yfk'

This together with (3.1) and (1.9) implies (3.2). It remains to prove (3.3). Let

H = F /\fk . Since k is increasing, we have for any r > s > R,

F(r) - F(s) > y[kij~)[H(r) - H(s)].
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By (3.4),

F(r)-F(s)= [ k(t)[l - H(t)2]dt.
Js

Thus

(3.6) H(r) - H(s) < f Jk(t)[l - H(t)2]dt.
Js

We claim that

(3.7) supH(r)< M = max(l,H(R)).
r>R

On the contrary, suppose that there exists r > R such that H(r) > M. Then
(3.6) implies

inf{5 £[R,r]; H(t) > H(r) for any t in [s, r]} = R.

Thus H(R) > H(r) > H(R), which is a contradiction. This proves the claim

(3.7), which shows (3.3).        Q.E.D.

Consider the initial value problem

(3.8) <p" + (n-l)Ftp' = <p      in   (i?,oo),

(3.9) tp(R) = 1,    <p'(R) = 0.

Lemma 3.2.  tp, tp' > 0 in (R, oo),    and   (p(oo) = limr_>00 <p(r) < oo.

Proof. The first assertion clearly holds. Put O = logçz. By (3.8),

(3.10) <D" + (zz-l)FO' + (0')2 = 1       in   (R,oc).

This implies
1     4>"

(n-l)V<j-T.

We have

Thus

Hence

(■ e k(r) \ ,*/ x    */»« ^  1*00 ds     <t>'(R)

for any r > R; which shows that lim^oo <p(oo) < oo.     Q.E.D.

Put

^r) = 1-w^'        V(x) = v(d(p,x)).
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Lemma 3.3.   y/ is decreasing,   0 < y/ < 1,   lim,.-^ y/(r) = 0,   and

(3.12) (1-A)V>1       in   M\BP(R).

Proof. We have only to prove (3.12). By geodesic spherical coordinates based

at p,

-»w-râf('"M+*#*«)•
where r = d(p, x) and ^/g is a density function of the area element of dBp(r)

with respect to the standard area element of the unit sphere S"~x (cf. [Cha,

p. 149]). We now apply a comparison theorem (cf. [Ka, Theorem 2.49] and

[Sa, Theorem 3.1]) to dryfg/yjg, taking as a model manifold a rotationary

symmetric Riemannian manifold with radial sectional curvature —k(r) (see

[Cho] or Section 4 below), and get

where F = f'/f with f(r) being the solution of (1.5)-(1.6). Since tp' > 0,
this implies that

(1 - A)V(x) > 1 + -^ (<p"(r) + (n- l)F(r)tp'(r) - tp(r)) = 1.

Q.E.D.

We are now ready to complete the proof of Theorem B by constructing a

positive null solution. Let p(x, y, t) be a minimal fundamental solution for

the heat equation on M. Put

(3.13) w(x,t)= I p(x, y, t)dV(y).
Jm

Then we see that w is a solution of (1.1) with w(x, 0) - 1 and 0 < w < 1
on M x [0, oo).

Lemma 3.4.  0 < w < 1    z'zz   M x (0, oo).

Proof. Put

(3.14) tz(x)= /   e~'w(x,t)dt.
Jo

Then 0 < v < 1 and ( 1 - A)v = 1 on M. By Lemma 3.3 and the minimality
of p(x, y, t), there exists a positive constant C such that

(3.15) v(x)<Cx¥(x)      in   M\BP(R)

(cf. [Dl, Lemma 2.3]). Thus

(3.16) lim    v(x) = 0,
d{p,x)—>oo

which implies that w ^ 1. On the other hand, the parabolic Harnack inequality
together with the semigroup property of the minimal fundamental solution p
implies that either w = 1 or 0 < w < 1 in M x (0, oo). Hence 0 < w < 1.

Q.E.D.
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Completion of the proof of Theorem B. Put u(x, t) = 1 - w(x, t). Then we see

that w is a solution of (1.1) with u(x, 0) = 0 and 0 < u < 1 in M x (0, oo).

Q.E.D.

4.  ROTATIONARY SYMMETRIC RIEMANNIAN MANIFOLDS

Let M be a Riemannian manifold rotationary symmetric at p such that the

exponential map at p is a diffeomorphism from TPM onto M (cf. [Cho]).

Then the sectional curvature K(X, y(R ; q)) in ( 1.7) depends only on R, and is

called a radial curvature. Denote it by -k(R), and let / be a solution of (1.5)-

(1.6). Then the Riemannian metric in terms of a geodesic polar coordinates at

p is given by

(4.1) ds2 = dr1 + f(r)2dS2,

where d&2 is the standard metric of the unit sphere S"~x.

Theorem 4.1. Assume that k is a positive increasing function on [0, oo) such

that k(r) > ar2 on [0, oo), where a is a positive constant. Then UPH holds for

M if and only if (1.11) holds.

In view of Theorems A and B, Theorem 4.1 is derived from the following

lemma.

Lemma 4.2. There exists a positive constant C such that

(4.2) K(X, Y)>-Ck(R)

for any R>0 and   X, Y £ UqM with (X, Y) = 0 and q £ dBp(R).

Proof. With X = (x,v),Y = (0,w), where x £ [-1,1] and v, w £
TeSn~x (q = (R, 8)), the sectional curvature K(X, Y) is given by

(4.3) K{X,Y) = ^^(l-x2)-^x2

(cf. [BO, the formula on p. 27]). Thus, in view of (1.5), it suffices to estimate

the function

f(R)2
Clearly, limR^0 g(R) = -k(0) and /, /' > 0 in (0, oo). By (3.3) of Lemma

3.1, there exists a positive constant zzz > 0 such that   k(R) > m[f'(R)/f(R)]2
for any R > 1. Hence there exists a positive constant C such that   g(R) >

-Ck(R) for any R > 0. This proves the lemma.     Q.E.D.

5. Remarks

5.1. When UPH does not hold for M, an interesting problem is to determine

the structure of all positive solutions u of ( 1.1)—(1.2) with zz0 = 0 and zz > 0
in M x (0, T]. This problem is closely related to a parabolic Martin boundary

and Martin kernel (cf. [Fre], [MT], [M3,4], [P]).

5.2. It is of some interest to compare Theorem 4.1 with a delicate criterion on

existence of a nonconstant positive harmonic function, which is unstable under

constant multiplication of the radial curvature (cf. [M2,l]).
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