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Abstract. We construct an example of the periodic evolution system governed

by the time-dependent subdifferential operators admitting almost periodic orbits

which are not quasiperiodic.

Introduction

Let H be a real Hubert space with inner product (•, •) and <!>(//) be the

set of all lower semicontinuous convex functions cp from H into (-co, +00]

with D(cp) = {u e H; cp(u) < +00} ^ 0. For a T-periodic mapping t \—> cp1

from R1 into <S>(H), we consider the following nonlinear evolution equation:

(E) -j-u(t) + dtp'(u(t))3 0,        teR1,

where dtp' is the subdifferential of cp' (see Brézis [3]), i.e.,

dcp'(u) = {feH;  tp'(v) - tp'(u) >(f,v- u) vw € D(cp')}.

The main concern here is the structure of

<W = {u : I1 ^ H; u satisfies (E) for a.e. t e R1

and m(R') is precompact in H},

the set of all precompact orbits of (E). For the case where H = Rd , the proper-

ties of precompact (bounded) orbits has been one of the main objects of study in

the theory of ordinary differential equations and dynamical systems. For d = 2

the classical Poincaré-Bendixson result asserts that the almost periodic solutions

of dx(t)/dt = F(x(i)) must be periodic, where F(») need not be monotone nor

of subdifferential type. This kind of simple structure of the set of almost peri-

odic orbits is peculiar to the case d = 2. In fact, Cartwright [4] showed that

almost periodic orbits in Rd   (d > 2) are quasiperiodic with at most d - 1
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basic frequencies and moreover if F depends on t periodically, then the ba-

sic frequencies are at most d. This result was generalized by Cartwright [5]

and O'Brien [12] to the case where F depends on t almost periodically, where
they showed that the number of the basic frequencies in addition to those of

¥(t, •) is still at most d - 1. On the other hand if the system is governed

by time-independent subdifferential operators, it was revealed by Bâillon and

Haraux [2] that Aftfê has a very simple structure independent of the dimen-

sion of H. They studied the case where dcp'(u) = dcp(u) + f(t) and showed

that every bounded solution of (E) on R1 must be T-periodic and the differ-

ence of any two T-periodic solutions is a constant (in time) vector. However

for the general case where </(•) depends on t, the structure of 71^ recov-

ers its complexity. In fact, Kenmochi and Ôtani [10] constructed an example

of a periodic system in H = R3 whose precompact orbits are not necessar-

ily periodic (but quasiperiodic). Furthermore Haraux and Ôtani [7] showed

that if H = Rd, then any bounded orbit of (E) is quasiperiodic with at most

[^p] = max{r e N; r < d^-} basic frequencies. This upper estimate for the

number of basic frequencies is shown to be best possible by giving an example

of a periodic system in H = Rd whose precompact orbits are quasiperiodic

with [-^-i] basic frequencies. They also treated the case where dtp' is re-
placed by time-dependent general maximal monotone operators to assert that

the same conclusion as above holds true with d replaced by d + 1. Roughly

speaking, almost periodic functions which are not quasiperiodic must have in-
finitely many basic frequencies. Thus under these observations it seems to be

a natural question to ask whether there exists a periodic system in an infinite-

dimensional Hubert space which allows almost periodic but not quasiperiodic
precompact orbits or not. As a matter of course it is well known that some

nonparabolic P.D.E (such as wave equations) may have almost periodic solu-

tions with infinitely many basic frequencies (see, e.g., Amerio and Prouse [1]).

However these are described by the systems governed by maximal monotone

operators which are not of subdifferential type. The main purpose of this paper
is to give an affirmative answer to this question for the systems governed by

subdifferential operators by constructing such an example in I2 .

Precompact orbits in I2

In this section, we are going to construct precompact orbits which are almost

periodic but not quasiperiodic in   I2.   Denote the generic point  x   of I2   by
/ \ 1/2

x = (xq, Xx, ■ ■ ■ , x„, ■■■) with norm |jc| = [Yl'jíoxj) > an^ prepare two

subspaces   Xx and X0   defined by

/ ,     °° \1/2

Xx = { x e I1 ;  \x\= í x¡ + £ 4k(x2k_l + x22k)\      < +oo },

X0 = {xeXi; x0 = 0}.

For each k e N, 6 e[0, n), and / e [0, 1/2*], we introduce an operator

Rk(6, t)   which maps   Xo   into   Xi   by

x — (0, Xi, ■ ■ ■ , xn, ••■) e Xq,
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where

(x2k-x, x2k) = rk (cosak , sinak)       (0 < ak < 2%)

and rk = (x2k_l+x2k)x/2:

Rk(d, t) x = (xo(t), xx(t), ■■■ ,xn(t), •••)

with

' Xo(t)        = rk sin2*^i sin(9-ak),

x2k-i(t)   - fk \cos6cos(6 - ak)+ sin6 sin(6 - ak)cos2knt],
<

x2k(t)       - rk [sin 0 cos(6 - ak) - cos 0 sin(6 - ak) cos 2*71/],

. Xj(t)        = Xj,    j' ± 0, 2k - 1, 2k.

The operation (0, x2k-x » x2k) t-> (x0(t), x2k_x(t), x2k(t)) geometrically means

the axial rotation of (0, x2k_x • x2k) in R3 with axis 1$ = {(£o, ^ik-i • £,ik) £

R3 ; £,o = -£2k-i sin 6 + Ç2k cos 0 = 0} and angle 2knt. Hence the following
properties are direct consequences of the definition of  Rk(d, t) :

(1) Rk(8, t)   is a linear isometry from   X0   onto   Rk(6, t) Xo, which

forms a hyperplane in  Xx, for each  k e N, 6 e [0, n), and t e [0, 1 /2k].

(2) Rk(d,l/2k)Xo = Xo.
(3) Rk(6,t)  isa  C°°-function of teRx  for any k e N and 0 e [0, it).
For each   6 = (0., 82, ■■ ■ , 6k, ■ ■ ■ )   with   0 < 0k < n   (ken),    by

composing Rk(-, t) we construct the operators Sk(6k, t) (0 < t < 2~k+x)

and  S(S,t)   (0<t<2)   as follows:

(4) Sk(6k,t) = \R^t)'        k k       °^1/2\
\Rk(ek,t-l/2k)Rk(0,l/2k),     l/2k<t<2/2k,

k-l

(5) S(e,t) = Sk(6k,t-tk_x) Y[Sj(dj,2x-J)   vte[tk-x,tk],ke®,

;=i

where   t0 = 0   and   tk = y!)=\ 2x~> = 2(1 - 2-k).     Then it is easy to see that

Sk(6k> 2/2 )x = (0, Xx, x2, ■ ■ • , x2k_i,

rkcos(afc + 20*:)^sin(afc + 26k), x2k+x ,■■■),

whence follows

(6) lim   S(6, 0* = (0, r.cos(ai+20.), r.sin(a»+20i), ••• ,

rn cos(an + 2dn), rn sin(a;„ + 20„), • • • ),

where x = (0, /•■ cosai, r( sinai, • • • , rncosan , rnsinan , ■ ■■).

Thus we can extend   S(&, t)   up to   [0, 2]   and further to the whole line

R1   through the formula:

J 5(6, t) = S(B, t-n) [S(e,2)]n,    2n<t<2(n+l), «eN,

\ [5(0, 2)]° = Id,     [5(6, 2)]" = {[5(6, 2)]-'}-",    neZ, n<0.

Lex X(t) be the image of X0 under 5(6, t), i.e., X(t) = 5(6, /) X0. Then
we have the following proposition.
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Proposition 1. The following properties hold.

(i)   X(t) has a period 2, i.e.,

(7) X(t + 2n) = X(t),    v«gZ, v/6

in particular X(2n) = Xo, v« e Z.

(ii) 5(6, t) is a linear isometry from X0 onto X(t), and 5(0) is the identity
on X0.

(iii) For all x = (0, r{ cosai, rx sinax ,■■ ■ , rn cosan, rn sina„, ■ ■ ■ ),

S(6,2m)x

(8) = (0,/"i cos(ai+2m0i), n sin(ai+2w0i), ••• ,

rn cos(a„ + 2m0„), rn sin(a„ + 2mdn) ,•■•)•

(iv) The right and left derivatives (d+/dt)S(Q, t)x, (d~/dt)S(@, t) x exist
for every t e R1 and x e X0. Moreover

(9) (d±/dt)S(0, t)x e X(t)L = the orthogonal complement of X(t) in I1 ,

A / tx> \'/2

(10) sup 1-7-5(6, 0^1^ < [E^r2]      n = \x\Xl * <+00   *xeX0.
t    "t \k=x        )

Proof. It is clear that properties (i)-(iii) follow from the facts (l)-(3) and (6).
Recalling the geometrical meaning of Rk(6, t) (or by the direct calculation), we

can easily deduce (9). Moreover, since \$-t (Rk(6, t)x) \(2 = rk2kn\ sin(0 -ak)\,
we obtain

1/2

^supr* 2k n< ( Y,r2k4k)

The compactness of orbits 5(6, f)x is assured by the following result.

sup
t

£ts(e,t)x < s\xprk 2k n < [J2 rk 4k )      n = \x\Xxit.   D
k \k=l )

Proposition 2. Let XR = {x el2; \x\\ =x\ + YAk=x 4>c(x2k-i + xik> ^ Rl) >

R > 0 ;    then   Xf   is a compact set in I2.

In particular, X* = {x e X0 ;  \x\2x¡ < R2} and XR(t) = 5(6, t) X* are

compact sets in i2.

Proof. Let x" = (Ç$, Ç%, • • • , Ç%, • • • ) e XR ; then by the usual diagonal ar-
gument we can extract a subsequence of x" denoted again by x" such that

££ -> 4 as n -► oo for all   fceRU {0} . Since

( m \x<2

|(^")2 + E4,C((^-i)2 + (^)2)}     <*   forallmeN

and   (£0•.£?.•••» É&)   converges to   (f0, £i, ••• , im)   in   Rm , we easily see

cm yi2

Uof + 'E^täk-i+tik)}     <R   for all m eN,

whence follows x = (Co, £i , ■ ■ • , ím » • ■ • ) e XR . Moreover   x e XR   implies

that (¡Zlk_i + C¡k)l/2 ̂  2~k R    for a11 k e N and tnat f9r an arbitrary   e > 0
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there exists a number TV such that   2YAk=N+i(2~k R)2 < e2.   Therefore

2N oo oo

\xtt-x\2lI<¿z\Zj-iJ\2+   E  \q\2+   E   \ij\2
7=0 j=2N+l j=2N+l

2N

<EI^-í;l2 + e2-
j=o

Hence limsup^oo \x" - x\(2 < e for all e > 0, i.e., x" -> x in £2. Thus

XR is proved to be compact in I2. The same argument as above assures that

Xq is also compact in I2. Since XR(t) is the image of XR by 5(6, t) which

is continuous from I2 into itself, XR(t) turns out to be compact in I2 for all

Í6R1.    D

Periodic systems

Let   R   be a positive number and for each   t   we put

<P'(x) = { °+
if  xeXR(t),

+00   if  xei2\XR(t).

Since XR(t) is closed convex, it is clear that cp' e <P(¿2), D(cp') = XR(t)

and X(t)1- c dcp'(x) for any x e XR(t). Furthermore, in view of (7),

(9) and (10), we find that cp' is periodic with period 2 and for every x e

XR, u(t) = 5(6, t) x gives a solution of the equation (E) with u(0) = x.

At the same time, this fact assures that {ç»'}.6r. satisfies the t-dependence

conditions introduced in Yamada [15], Kenmochi [8,9], Kenmochi and Ôtani

[11], Haraux and Ôtani [7] and Ôtani [13,14].
Now the existence of an almost periodic solution of (E) which is not quasiperi-

odic is assured by the following result. For the notion of almost periodicity and

quasiperiodicity, we refer to Amerio and Prouse [1] and Fink [6].

Theorem. Let 6 = (0-, 82, ■■ • , 0„ , • • • ) be linearly independent over Q, i.e.,

for every meN, {0j,--- , 0m} are linearly independent over Q. Then for

every x e XR, u(t, x) = 5(6, t) x gives a solution of(E), which is almost
periodic but not quasiperiodic.

Proof. The precompactness of the orbit   {5(6, t) x}t€R>   is insured by Propo-

sition 2. Therefore it follows from Theorem I of [7] that   u(t, x)   is almost

periodic.  Let   x = (0, r» cos a- , r< sin a», • •• , rn cos a„ , r„ sin a„ , ■ ■ ■ ) e XR

and   e¡   be the unit vector whose j-Xn component is 1.

Since     x = YAk=i (rk cosa/t e2k_i + rk sinak e2k), we get

oo

u(t,x) = *£Juk(t),

k=l

where   uk(t, x) = 5(6, t) (rkcosak e2k_x + rksinc^ e2k).

For any m e N, define the restriction operator Pm from I2 onto R2m+1

by   x = (Xq, Xx, ■ ■ • , xk, •• • ) i-> Pmx = (x0,xi,--- , x2m+x).     Put

<P'm(x) = {
if  x e XR(t) = PmXR(t),

+00   if  x e R2m+1 \ XR(t).
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Then cp'm e <P(R2m+1) and cp'm has a period 2. Furthermore vm(t) =

Pmu(t,x) = Y,k=i pmtik(t) satisfies: dvm(t)/dt + dcp'„ (vm(t)) 3 0. There-
fore as is shown in Remark 4.3 of [7], vm(t) is quasiperiodic with (m + 1)

basic frequencies {2n, 0-, ••• , 0W}. Hence Y!k=\ uk(l) (me zero exten-

sion of vm(t) to I2) is also quasiperiodic with (m + 1) basic frequencies.

Thus u(t,x) = Y^k=xuk(t) has a countable number of basic frequencies
{2n ,6x, ••■ ,Bm, •••},   so can not be quasiperiodic.   D
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