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Abstract. Let X and Y be Banach spaces, dim X = oo, and let $f and

3$ be standard operator algebras on X and Y, respectively. Assume that

<¡>:sf^>£% is a bijective mapping satisfying \\<t>(AB)-4>(A)4>(B)\\ < s, A, Be
si , where e is a given positive real number (no linearity or continuity of <j> is

assumed). Then 0 is a spatially implemented linear or conjugate linear algebra

isomorphism. In particular, 4> is continuous.

Let X be a Banach space. By 38 (X) we mean the algebra of all bounded

linear operators on X. We denote by !7(X) the subalgebra of bounded finite
rank operators. We shall call a subalgebra sé of 38(X) standard provided

sé contains !?(X) (sé need not be closed). For any x e X and f £ X' we

denote by x<g>f the bounded linear operator on X defined by (x®f)y = f(y)x

for y £ X. Note that every operator of rank one can be written in this form.

The operator x® f is a projection if and only if f(x) = 1.

Let X and Y be Banach spaces, and let sé and 38 be standard opera-

tor algebras on X and Y, respectively. It is a classical result [4] that every

algebra isomorphism 0: sé -» 38 is spatial, i.e., there is a linear topological
isomorphism T: X —> Y such that <p(A) — TAT'1 for all A £Sé .

When discussing isomorphisms of algebras one usually assumes that these
mappings are linear. A more general approach is to consider the algebra only

as a ring. It seems that the first step in this direction was made by Rickart
[9, Theorem 3.2], who treated isomorphisms of primitive real Banach algebras
which are not assumed to be linear, i.e., they are isomorphisms merely in the ring

sense. The famous result of Kaplansky [6, 7] decomposes a ring isomorphism
between two semisimple complex Banach algebras into a linear part, a conjugate

linear part, and a nonreal linear part on a finite-dimensional ideal.

Let R be a ring. Recall that R is called prime if aRb = 0 implies a = 0
or è = 0. Assume that a prime ring R contains an idempotent e / 0,1
(R need not have an identity). Then every multiplicative bijective mapping of

R onto an arbitrary ring S is additive [8]. It is an easy consequence of the

Hahn-Banach theorem that 38 (X) is a prime ring. Thus, the above-mentioned
results imply that if dim X = oo, then every multiplicative bijective mapping

0 of 38(X) onto 38(Y) is of the form <f>(A) = TAT~X , where T: X - Y is
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either a linear topological isomorphism or a conjugate linear topological isomor-

phism. We shall see later that the assumption that X is infinite dimensional

is indispensable in this statement. Let us mention here that a similar result
concerning bijective multiplicative mappings between real Banach algebras was

obtained by Rickart [9, Lemma 3.1].
Instead of homomorphisms one can study approximate homomorphisms.

For example, Bourgin [3] proved that if 0 is a map of a normed algebra sé

onto a normed algebra 38 , and 0 satisfies both ||0(x +y) — <f>(x) - <j>(y)\\ < e

and ||0(xy) -(f>(x)<f>(y)\\ < ô , x, y £ sé , for given positive real numbers s, ô,
then 0 is a ring homomorphism of sé onto 38 . In the same paper, he consid-

ered transformations 0: C(S\) —y C(S2) which satisfy \\(¡>(fg) - <t>(f)<t>(g)\\ < £
for all /, g £ C(SX ). Here C(S¡), i = 1, 2, denotes the algebra of continuous

functions over the compact space 5,. Under some rather mild conditions, he

proved that such a mapping 0 is actually a multiplicative transformation. In [2]
Baker showed that an unbounded approximately multiplicative complex-valued
function defined on a semigroup S is multiplicative. An interested reader can

find further references on problems concerning approximate homomorphisms

in a survey paper [5].
The above-mentioned results lead naturally to the following question: Is every

approximately multiplicative bijective mapping 0: 38(X) —y 38(Y) a spatially

implemented linear or conjugate linear algebra isomorphism? Moreover, is the

same true for approximately multiplicative bijective mappings between arbitrary

standard operator algebras? It is the aim of this note to show that the answer

to this question is the affirmative in the case that dim X = oo. We shall also

discuss the finite-dimensional case. It should be mentioned that one of the ideas
that we will use is similar to those of Baker [2], who proved the superstability

of multiplicative complex-valued functions.

Theorem. Let X and Y be Banach spaces, dim X = oo, and let sé and 38 be

standard operator algebras on X and Y, respectively. Let e > 0, and assume

that 0: sé -^38 is a bijective mapping satisfying \\<¡>(AB) - <¡>(A)(j)(B)\\ < e
for all A, B £ sé . Then 0 is of the form <f>(A) = TAT~l, A £ sé, where
T: X -y Y is either a bounded linear bijective operator or a bounded conjugate

linear bijective operator.

Proof. First we shall prove that the mapping 0 is actually multiplicative. Let
C be a bounded linear finite rank operator on Y. Since 0 is surjective, there

exists a bounded linear operator D £ sé such that 0(D) = C. For arbitrary

A, B £ sé we have

\\{<KAB) - <p(A)4>(B))C\\ = \\(cj>(AB) - 0(^)0(5))0(D)||

< \\<t>(AB)<p(D) - <p(A)<KBD)\\ + \\<p(A)cp(BD) - 4>(A)<p(B)<p(D)\\

< 110(^5)0(7)) - <p(ABD)\\ + U(ABD) - <p(A)cp(BD)\\

+ \\<p(A)\\\\<p(BD)-<p(B)<p(D)\\

<E(2 + U(A)\\).

Replacing C by nC and sending n to infinity we see that <f>(AB) - 4>(A)<p(B)

annihilates &~(Y), and, therefore, 0 is multiplicative.

The standard operator algebra sé is a prime ring. It follows that 0 is a ring

isomorphism [8, Corollary].
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Let us fix a vector z e X and a bounded linear functional g £ X' satisfying

g(z) = 1. The operator z ® g is a projection of rank one. Consequently,

0(z <g> g) is a projection, and we claim that it has rank one, too. Indeed, if
this is not so, we have 0(z ® g) = Qx + Q2, where Q¡, i = 1,2, are nonzero

projections and rankQi = 1. It follows that Qx belongs to &~(Y) c 3% . The
same must be true for Q2 = 0(z ® g) - Qx. As 0 is a ring isomorphism we

can find two nonzero projections P\,P2£Sé such that 0(P,) = Q,■, i = 1, 2.
This further implies that z ® g = Px + P2—a contradiction. Thus, we have

0(z ® g) = u®h for some u € Y and h e T' satisfying h(u)= 1.
We define an additive mapping T: X -» T by

rx = 0(x®g)w,     xii

Let v4 be any operator from sé . For an arbitrary x £ X we have

TAx = <p(A(x ® g))u = <j)(A)<p(x ® g)u = <p(A)Tx.

Hence, TA = <f>(A)T holds for every A £sé .
Our next step will be to prove that T is bijective. Let us first assume that

we have Tx = 0 for some nonzero x £ X. We choose / from X' such that

f(x) = 1. It follows that

0 = 0(z ® f)Tx = 0((z ® f)(x ® g))u = u,

which contradicts the fact that h(u) = 1.
Let us choose a vector w £ Y. In order to prove that T is surjective we

must show that w £ Im T. For this purpose we fix a nonzero vector x £ X. As
Tx ^ 0 we can find k £ Y' such that k(Tx) = 1. The surjectivity of 0 yields
the existence of an operator A £ sé satisfying 4>(A) -w®k. It is easy to see
that the equation TAx = (f)(A)Tx implies the desired relation w £lmT.

Next, we shall see that dim Y > 1. Otherwise we would have 38 « C. This

would imply that sé and C are isomorphic rings, which contradicts the fact
that &(X) possesses nontrivial zero divisors.

Let x be an arbitrary nonzero vector from X. We choose f £ X' such that
f(x) = 1, so that x®f is a projection. We already know that <l>(x®f) can be
written as y ® m for some y £ Y and m £ Y'. Applying TA = 4>(A)T with
A = x ® f we get for an arbitrary nonzero complex number A that

0¿T(Xx) = T(x®f)(Xx)

= (¡>(x ® f)T(Xx) = m(T(Xx))y.

Hence, we have T(Xx) £ span{Tx} for every x £ X and every complex num-

ber A. This yields that for every nonzero x £ X there exists an additive

function i* : C -+ C such that

T(Xx) = tx(X)Tx

holds for all A € C. Let x and y be vectors from X such that Tx and Ty

are linearly independent. Comparing T(X(x + y)) with T(Xx) + T(Xy) one
can see that xx = xx+y = zy. If Tx and Ty are nonzero linearly dependent

vectors, we have xx = xz = ry, where z from X was chosen in such a way

that Tx and Tz are linearly independent. It follows that xx is independent
of x, and consequently, there exists an additive function x : C —► C such that

T(Xx) = x(X)Tx,        x£X,X£<C.
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Now we shall prove that x is a ring homomorphism of C. Indeed,

x(Xp)Tx = T(Xpx) = x(X)T(px) = x(X)x(p)Tx.

It is easy to see that the range of x contains the field of all rational numbers
and that T~x(py) =pT~xy holds for all p £ Q and all y £ Y .

It should be mentioned that so far we have not used the assumption that X

is infinite dimensional. We shall need it for the proof of the continuity of the

function x. Let us assume on the contrary that x is not continuous. Then

x is unbounded on every neighborhood of 0. We will construct by induction

sequences (yn) c Y and (/„) c X' satisfying

for all positive integers /,

for all positive i ^ k, and

||y/||<2-'   and   ||/,|| < 2"'

fi(T~iyk) = 0

n-\

\x(fn(T-xyn))\> n + Y,M{T-xyi))\
i=i

for all integers n > 1. We choose a vector

X' such that ||y,|| < 2~x and ||/i|| < 2"1 .
found vectors yx, ... ,y„ and functionals fx,

ties. We denote a closed complementary subspace of span{T lyx

y i £ Y and a functional f £
Suppose that we have already

.., fn having the above proper-
, T~ly„}

in I by F„ and choose a nonzero vector yn+x £ Y such that T~xyn+X £

(fl"=i Ker./}) n Vn = Z„ . Observe that Z„ is nontrivial because it is an inter-

section of two subspaces of finite codimension in an infinite-dimensional space.

With no loss of generality we may assume that the norm of y„+x is smaller

than 2~"~i, otherwise we can multiply it by a small enough positive rational

number. We can find a functional g„+x £ X', \\gn+\ || < 2~n~x, such that £«+i
annihilates the set {T xyx T~xyn} while gn+x(T V«+i)#0. As the set

{T(Ag„+i(r-1yn+1)): A e C, |A| < 1} is unbounded, we can find a A such that

f„+i = Xgn+X has the desired properties.

Let us introduce now a bounded linear functional / = Y^x f and a se-

quence of vectors wn = £"=i y i > n £N. Let x £ X be any nonzero vector.

The operator 0(x ® f) = T(x ® f)T~x is bounded, but on the other hand we

have that

\\4>(x®f)wn\
.¡=i

T(x®f)T-ir¿yi

Aj^fi{T-xyt)

*[f[Y,T-ly<))T*
,i=\

,i=l

7x|| > «117x1

which contradicts the fact that the sequence (w„) is bounded. Thus, x is

continuous, and consequently it must be either of the form x(X) = X or of the

form t(A)=A [1, pp. 52-57].
It follows that T is either linear or conjugate linear bijective mapping. Using

the closed-graph theroem we shall show that it is also continuous. Obviously,

0 maps the set of all linear bounded rank-one operators on X onto the set

of all linear bounded rank-one operators on Y . Moreover, for every rank-one
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operator A £ SF(X) the operator TA is bounded. The same must be true for

the operator <j>(A)T. Thus, for every v £ Y and k £ Y' the operator (v®k)T

is continuous. Let (x„) C X be a sequence satisfying x„ —> x and Tx„ -> y .
It follows that

k(y)v - (v ® k)y = lim ((v ® k)T)x„
n—»oo

= (v ® k)(Tx) = k(Tx)v,

and consequently, Tx - y . This completes the proof.

We shall conclude by considering the case that X is finite dimensional. Then
sé is isomorphic to the algebra of all n x n matrices for some positive integer

n . Consequently, the center of sé is nonempty, and the same must be true for

the center of 33 . Thus, dim Y < oo, and 0 can be considered as a mapping

between matrix algebras Mn and Mm . Here, Mk denotes the set of all k x k

matrices. Moreover, 0 maps the center of Mn onto the center of Mm . This

yields together with 0(A7„) = x(X)Im that x is a ring automorphism of C.

Introducing a new mapping tp: Mn-y Mm given by

<p([aij]) = <t>([r-l(aij)]),

one can easily verify that <p is an algebra isomorphism. This further implies
n — m and the existence of an invertible n x n matrix T such that

0([%]) = T[x(aij)]T-x

for all [aij] £ M„ .
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