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BOUNDED POINT EVALUATIONS
AND POLYNOMIAL APPROXIMATION

JAMES E. THOMSON

(Communicated by T. W. Gamelin)

Abstract. We consider the set of bounded point evaluations for polynomials

with respect to the L^-norm for a measure. We give an example of a measure

where the corresponding sets of bounded point evaluations vary with the expo-

nent p . The main ingredient is the remarkable work of K. Seip on interpolating

and sampling sequences for weighted Bergman spaces.

1. Introduction

For a positive measure p with compact support in the complex plane and for

1 < t < oo let P'(p) denote the closure in L'(p) of the analytic polynomials. A

point w is a bounded point evaluation (bpe) for P'(p) if there exists a constant

M such that \p(w)\ < M\\p\\ for every polynomial p . In [8] we describe P'(p)
and establish the existence of a large open set of bpes if P'(p) # L'(p). The

purpose of this paper is to give examples of measure where the corresponding

sets of bpes vary with the exponent t.

In all previously known examples the set of bpes is independent of the expo-

nent t. For example, if p is supported on the unit circle, then Szego's theorem

implies that the set of bpes is determined by point masses and the Radon-
Nikodym derivative of p with respect to Lebesgue measure. If the derivative

is log integrable, then the set of bpes includes the open unit disk . If not, then
P'(p) — L'(p) for all t and all bpes arise from point masses. However, if

Lebesgue measure is absolutely continuous with respect to p , then the set

{fdp:f£Lx(p)}

includes all the Poisson kernels as measures; and hence point evaluations at

points in the open unit disk are weak-star continuous. (Here we are considering

the polynomials as a subset of L°°(p), which has a weak-star topology.) It

follows that there exists a measure p on the circle with no bounded point

evaluations for t < oo but with weak-star continuous evaluations.

Historically, polynomial approximation with respect to area measure on sim-
ply connected regions has been studied extensively. References to major results

and examples can be found in [2] and [5]. More recently, John Akeroyd [1] has
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determined the set of bpes for P'(p) for a large class of crescents, where p is

harmonic measure on the boundary of the crescent.
Our examples are based on the remarkable work of Kristian Seip [6, 7].

Seip completely describes the interpolating and sampling sequences for weighted

Bergman spaces. He also gives examples of sequences that lie on the edge

between the two concepts. Let A denote normalized Lebesgue measure on the

open unit disk U . Let a and b be positive numbers, and let p be the measure

with dp = (1 - \z\2)2a~xdA . Seip constructs a sequence r in U (depending

only on b) such that T is interpolating for P2(p) if a > b and T is a set of

sampling for P2(p) if a < b . This example leads to our examples.

Our first example is an atomic measure p with the property that P'(p) =

L'(p) if 1 < t < 2 while P'(p) is a space of analytic functions if t > 2. For

our second example a we add a weighted area measure to p. The set of bpes

for P3(a) is U, but the set of bpes for Px(o) is U\[0, 1).

2. Background and Seip's theorems

Define for each n > 0 the weighted Bergman space A~n'2 to be the Banach

space of functions in L2(( 1 - \z\2)2n~xdA) that are analytic in U. Observe that

there exist positive constants c, (depending on zz) such that for f(z) — \jjaiz*

in A'"-2

\\f\\2 = (lln)jj\f\2(l-r2)2«-xrdrdd = Y,Cj\aj\2.

Thus, the partial sums of the Taylor series for / converge to f in norm.

Consequently, A~n'2 = P2((l - |z|2)2""'^).

Now we follow Seip [7]. Let

p(z, w)
z -w

1 - zw

which is the pseudohyperbolic distance function on U . We say that a sequence

T = {zj} is uniformly discrete (or separated) if

infp(zj, zk)>0.
J¿k

For a uniformly discrete set {z7} and \ < r < 1 let

D(r,r) = --M

where the sum is taken over all j with \ < \zj\ < r. For each z in U we

form a new sequence

The lower and upper uniform densities of Y are defined, respectively, as

Z)-(r) = liminfinfD(rz,r)
r-»l    zeu

and
D+(T) = lim sup sup D(YZ , r).

r—i    zeu
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The key example of a sequence is the following sequence from Seip [7]. For

a > 1, b > 0, let T denote the image of {aj(bk + i)}j,kçz under the Cayley
transform of the upper half-plane to U. Then

D-(T) = D+(T) = -r^.
o loga

The following relationship between atomic measures and area measure is an

immediate consequence of [7, Equation (2)]. Let {z¡} be a uniformly discrete

sequence in U, and let S = inf,^ p(z¡, zk). Then for / analytic in U

(1) £(1 - \Zj\2Y\f(Zj)\2 < C(ô)j(l - \z\2y~2\f(z)\2dA(z)

whenever s > 0 (both sides may be infinite).

A sequence {zj} of distinct points in U is a set of sampling for A~n'2 if

there exist positive constants Kx and K2 such that

A-,y'|/|2(l-|z|2)2"-1^(z)<5]|/(zJ)|2(l-|z;|2)2'!+1

<K2J\f\2(l-\z\2)2"-xdA(z)

for every / in A~"'2. The sequence {zy} is a set of interpolation for A'"'2

if for every sequence {a¡} for which $3(1 ~ I2/!2)2""1"1!0/!2 < °° there exists a

function / in A""'2 such that f(zf) = a¡ for all j.
We now state Seip's theorems for weighted Bergman spaces [7].

Theorem 2.1. A sequence T of distinct points in U is a set of sampling for A~"'2

if and only if it can be expressed as a finite union of uniformly discrete sets and

it contains a uniformly discrete subsequence F for which D~(T') > n .

Theorem 2.2. A sequence T of distinct points in U is a set of interpolation for

A~n'2 if and only if T is uniformly discrete and D+(F) < n.

3. Examples

Let zz > 0, and let Y = {z¡} be a uniformly discrete sequence with D+(T) =

D~(T) = n . Let d = infj-¿k p(zj, zk). For z in U let ôz denote the measure

of point mass at z . Let a be the sigma-finite measure Yl &z, ■

Let p be the measure with dp - (I - \z\2)2n+xda. Using (1) with / = 1,
we see that

í(l - \z\2)2n+x da < C(d) f(l - |z|2)2"-' dA(z) < oo.

Thus, the measure p is finite. This argument also applies to each atomic mea-

sure introduced in the proof of the following theorem.

Theorem 3.1. If 1 < t < 2, then P'(p) = L'(p). If t > 2, then P'(p) ¿ L'(p).

Proof. First consider the case where I < t < 2. Let s = t/2. Choose m > n

such that sm < n, and let e = (m - zz)/(l - s). Let v be the measure with
dv = (\ -|z|2)2m+1-2£rfa.

Because e < m , the measure v is finite. Also the equality

2n+l =2m+l -2e + 2es
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implies that

dp = (l - \z\2fdu.

Let x be the measure with dx = (1 - \z\2)2edv .

Now let q be the positive number with (l/q)+s = 1. Let p be a polynomial.

By Holder's inequality

J\p\'dp= j\p\<(l-\z\2Tdv

< ([\P\2{l-\z\2)2edv\  \\v\\xlq.

Hence there is a constant C, independent of the polynomial p , such that

(2) \\phw < C\\p\\L2{x).

Because m > D+(T), it follows from Theorem 2.2 that Y is interpolating

for A~m'2 . Using (1) and noting that dx = (1 - \z\2)2m+xda, we see that the

characteristic function of each singleton is in P2(x). It now follows from (2)

that each such characteristic function is in P'(p). Thus P'(p) - L'(p).
Next consider the case where t > 2. Again let 5 = t/2. Choose zzz such

that 0 < m < n and n < ms. Define e and v symbolically the same as in the

previous case. Note that we again have 0 < e < zzz and dp - (I - \z\2)e'du.

Let t be the measure with dx = (1 - \z\2)2m~xdA .

Now let q be the positive number with (l/q) + (2/t) = 1. Let p be a

polynomial. Because zzz < D~(Y), it follows from Theorem 2.1 that T is a set

of sampling for A~m'2. Thus there exists a constant C such that

I \p\2(l - |z|2)2m-' dA<C Í \p\2(l - \z\2)2m+x da

= cj\p\2(l-\z\2)2Edu

<c j(\p\'(i-\z\2ydv)2"\\u\\xi".

It now follows that there exists a positive constant K such that

WpWlHx) < K\\p\\uw ■

Observing that each point in U is a bpe for P2(x), we see that U equals the

set of bpes for P'(p).   D

Remark. In the case where P'(p) = L'(p) the set of bpes for P'(p) equals the

set of atoms of p. It is obvious that each atom gives rise to a bpe, so it suffices

to consider a point X that is not an atom. Since (z-X)L'(p) is dense in L'(p),

it follows that the polynomials that vanish at X are dense in L'(p) also. In

particular, the constant function one is in the closure of the set of polynomials

that vanish at X. But the constant function one takes on the value one at each

bpe, so X cannot be a bpe.

Theorem 3.2. There exists a measure o such that the set of bpes for P3(o) equals

U and the set of bpes for Px(o) equals U\[0, 1).

Proof. Let n , Y, and p be as indicated at the start of this section. Applying

a Mobius transformation to Y, if necessary, we may assume that Y does not

meet the interval [0, 1 ).



BOUNDED POINT EVALUATIONS AND POLYNOMIAL APPROXIMATION 1761

Now let t = 1, and choose zzz and x as in the first part of the proof of

Theorem 3.1. Recall that Y is an interpolating sequence for A~m'2. Thus,

there exists a nonconstant function / in A~m'2 that vanishes on Y. Let
u(z) = (1 - |z|2)2m-1, so P2(udA) = A~m>2. Using (1), we see that each

sequence of polynomials converging to / in P2(udA) also converges to / in

P2(x). Now using (2), we see that each such sequence also converges to / in

Px(p). Thus, / belongs to Px(dp + udA).
By a method of W. Hastings [4; 3, p. 83], there is a weight function w

defined on U\[0, 1) such that (a branch of) zxl2 belongs to Px(w\f\udA).

Furthermore, we may assume that 0 < w < 1 and w is bounded below on

each compact subset of U\[0, 1).

Let a be the measure with do = dp + wudA. Since u and w are

bounded below on each compact subset of U\[0, 1), it follows that each point

in U\[0, 1) is a bpe for Px(o). Recalling that Y does not meet [0, 1), we

may conclude that Px(o) contains no nontrivial L'-summand. By [8] it fol-

lows that the set of bpes is open and that each function in Px (a) extends to be

analytic on the set of bpes.

The function / above is in Px(o) because w < 1. It follows from the

defining property of w that zx,2f belongs to Px(o). But zl/2f cannot be

extended to be analytic in any region containing a point on [0,1). Thus, the

set of bpes for Px(o) equals U\[0, 1).
Since the set of bpes for P3(p) equals U, the same conclusion holds for

Pi(o).   U
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