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REGULAR OPERATOR CONVERGENCE AND NONLINEAR
EQUATIONS INVOLVING NUMERICAL RANGES

RAM U. VERMA

(Communicated by Dale Alspach)

Abstract. Regular operator approximation theory, based on the work of

Anselone and Lei (1986), is generalized to the case of strongly accretive opera-

tors and applied to nonlinear equations involving the generalized Zarantonello

numerical ranges

1. Introduction

Recently Anselone and Lei [4] studied the regular operator approximation

theory, which heavily relies on inverse compactness principles and provides a

convenient general framework for the convergence of approximation solutions;

then the existence of solutions follows in a natural manner. They applied this

theory to the solvability of equations involving strongly monotone operators,

and, as a result, they illustrated the theory to nonlinear integral equations of

Urysohn and Hammerstein types. For a detailed account on regular approxi-

mation theory, we refer to [1-6, 15].

In this paper our aim is to generalize the results of Anselone and Lei [4] to the

case of nonlinear equations involving strongly accretive operators in a slightly

different setting. The obtained results are applied to the equations involving the

theory of the generalized Zarantonello numerical ranges.

Now we need to recall some definitions. Let X and Y be two Banach spaces.
Let TV = {1, 2,...} with infinite subsets N', N", ... . Let {xn} = {x„: n £
N} c X , and let S„ c X for n £ N. Then {x„}* = {x £ X: x„ -y x, n £ N'}
and {Sn}* = {x £ X: xn —► x, xn £ Sn, n £ N'} are called the sets of all

cluster points (limits of sequences).

A sequence {jc„} is said to be d-compact (discretely compact) if every sub-

sequence has a convergent subsequence. Alternatively, {xn} is ¿/-compact if

{x„: n £ N'}* ^ 0 for n £ N'. Similarly, {5„}%is called d-compact if every

subsequence {xn £ Sn: n £ N'} has a convergent subsequence. Alternatively,

{S„} is ¿-compact if {Sn: n £ N'}* # 0 for all N' such that Sn ¿ 0 for
n £ N'. If Sn = 0 for n £ N, then {Sn} is trivially ¿/-compact.

A set sequence {Sn} is said to converge to a set S (Sn —> S as n —» oo)

if any e-neighboorhood of S contains S„ for all n sufficiently large. Such a
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limit is not unique, that is, Sn —> S c S' => Sn —y S'. Similarly, Sn = 0 for

n £ N =» S„ -» S for all S c X, S„ -y 0 => Sn = 0 for « sufficiently large,
and S„ t¿ 0 for n £ N', Sn -y S =ï S ^ 0 . The connection between the set

convergence and ¿/-compactness is given by

{S„} d -compact and {S„}* c S ^ Sn ̂  S.

For K, K„ : X —> 7, K„ —y K represents pointwise convergence, that is,

Ä„x -y Kx for x e I as « -> oc, and Kn -^ K represents continuous

convergence, that is, x„ —y x implies K„x„ —► ATx for all xel.

A word of caution: here and in what follows, the symbols " —► " and " ^> "

shall denote, respectively, the strong convergence and the weak convergence.

2. Regular operator approximation theory

Let us consider operators A , An: X —> Y. An operator A is called regular

if {x„} bounded and {Axn} ¿/-compact implies {xn} ¿/-compact. An oper-

ator sequence {An} is asymptotically regular if {x„: n £ N'} bounded and

{A„xn: n £ N'} ¿/-compact implies {x„: n £ N'} ¿/-compact. The regular

convergence (A„ -^ A) is defined as follows: An A A if A„ -^ A and {An}

is asymptotically regular. We note that An -4 A implies that A is continuous,

and An -4 A implies that A is regular and continuous. By simple arguments

we find that {A„} asymptotically regular and |A„| > ¿5 > 0 for all « > «o

implies that {AnXn} is asymptotically regular, and A„ -4 A and X„ —► X ̂  0

implies that XnAn -^ XA .
To include some more definitions, let A' be a real Banach space with its

dual X* uniformly convex. For n £ N, let P„ be the projection on X with

PnX — X„, dimXf, < 00, and Pn -» 7 as n —y 00. Then {P„} is uniformly

bounded, Pn -^ 7, that is, P„x„ -+ x as xn -» x, and the convergence in
P„ —y I is uniform on a compact set. Let 7:I-<r be a normalized duality

mapping, that is, [x, Jx] — \\x\\2 and ||7x|| = ||x||, where [•, , •] is the duality
pairing between the elements of X and X*. Here P* is a projection on X*

with P* —y I* as n —> 00 .

An operator A: X ^ X is said to be strongly accretive if, for a constant

a>0,

(2.1) Mx-^v,7(x-j;)]>a||x-i'||2     forallx,yeX.

We note that (2.1) also implies that

(2.2) \[Ax-Ay,J(x-y)]\>a\\x-y\\2    for all x, y e *.

Next, we shall need to recall a theorem of Anselone and Ansorge [2] crucial

to the work at hand. The scope of the theorem extends to the case of compact

operators as well.

Lemma 2.1 [2, Theorem 4.10]. Let X and Y be two Banach spaces and A,

A„: X -y Y be operators from X to Y. If An -^ A, y„ -y y, y > 0, and

S={x£X:Ax = y,  ||x||<y}, and

Sn = {xn£X: A„xn = y„ ,  ||x„|| < y},

then {S„} is d-compact, {S„}* c S, and Sn —y S.
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Lemma 2.2 [11, Lemma 18.2]. Let Rn be a real Euclidean space with the inner

product (','). Assume D c R" is bounded, open, and convex, and 0 £ D.

Assume F: D —► Rn is continuous and (Fx, x) > 0 for x £ 3D. Then Fx — 0
for some x £ D.

Lemma 2.3 [16, Proposition]. Let X be a separable Banach space with X*

uniformly convex, and let {xn} be a bounded sequence in X. Then there exist a

subsequence {xk} (say) and a point v £ X such that {J(xn - v)} -^ 0 in X*.

Now we compare the equations

{Ax = b, x, b £ X,

P„Axn =P„b,       xn £Xn, b£ X.

Here

PnAxn = Pnb «■ [Pn(Axn - b), P*Jx]

f23, = [Pn(Axn-b),Jx]

1 " ' =[Axn-b,P;jx]

= [Axn - b, Jx] = 0    for x £ Xn .

We are about to consider the main results.

Theorem 2.4. Let A: X —y X be bounded, continuous, and strongly accretive

with a constant a > 0. If P„ is projection on X with Xn = PnX and J: X -y

X* is a normalized duality mapping, where X* is uniformly convex, then the
following implications hold:

(i) For b£X, \\Jx\\ = \\x\\ > y > \\A(0) - b\\/a, x£X,  y>0,

[Ax-b, 7x]>0.

(ii) For b £ X, y > 0, and [Ax - b, Jx] > 0 with ||x|| = y, we have

P„Axn - Pnb    for some xn £ Xn with \\x„ \\<y, n £ N.

(iii) PnA^A.
(iv) For b £ X and y > \\A(0) - b\\/a,

Sn = {x„ £ Xn : P„Ax„ = P„b, \\x„\\ <y, n £ N} ¿ 0.

(v) The equation Ax = b has a unique solution x with ||x|| < y.

(vi) Sn - {x} .

Proof (i)

[Ax-b, Jx] = [Ax - A(0), Jx] + [A(0) -b,Jx]

>a\\x\\2-\\A(0)-b\\\\x\\

> a\\x\\2 -ay||x|| > 0.

(ii) With no loss of generality, we take dimX„ = n . Let {4>x, ... , <p„} be
any basis of X„ . Then

n

Jx„ = ^af70,,        xn£Xn.
i=i
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The correspondence x„ <-> (a", ... , a") defines an isomorphism Xn <->/?" .

Let us define F:R" -» R" by

Fa" = ([Ax„ -b, J<px], ... , [Ax„ - b, J</>„]).

Then F is continuous, and by (2.3) we have

Fa" = 0 <£> PnAxn = P„b.

Next, letDn = {x„ £ Xn : ||x„|| < y} and D„ <-> Dn c Rn. Then D" is

bounded, open, and convex, and 0 £ Dn . Also, ôD„ <-> ôD" . By hypothesis,

[Fa" , a"] = [Axn - b, Jx„] > 0    for a" £ dD" .

We obtain, by Lemma 2.2, Fa" — 0 for a" £ D" . Hence there exists Jxn <-> a"

such that xn £ D„ and P„Axn = Pnb .

(iii) Since P„ -^ 7 implies P„/l -^ A, it suffices to show that {PnA} is
asymptotically regular. To achieve this, let {x„} be bounded and {P„Ax„}

¿/-compact. Then {Ax„} is bounded. Since PnAxn —► è for some £> € X,

n £ N" c N' and, by Lemma 2.3, 7(x„-x) ^+ 0 for some xeI, n £ N' c N,
it follows that

[y4x, J(x„ - x)] —y 0,

[Ax„ , P*J(x„ - x)] = [P„Axn , J(x„ - x)] -» 0,

and

[Ax„ - Ax, J(x„ - x)] = [Ax„ , J(x„ - x)] - [Ax, J(x„ - x)] -> 0.

Since A is strongly accretive, by condition (2.1), we get

a\\x„ - x||2 < [Axn - Ax, J(xn - x)] —y 0.

Therefore, x„ -» x for « e TV", and, consequently, {x„} is ¿/-compact and

{PnA} asymptotically regular.

(iv) Assertions (i) and (ii) imply that S„ ^ 0.

(v) Since A is strongly accretive, this implies that any solution x of Ax — b

is unique.

(vi) Since PnA -A /I (assertion (iii)) and P„6 —► b (since P„ —y I), we obtain

from Lemma 2.1 and assertion (v) that Sn —► {x} .   D

3. Application to numerical ranges

This section deals with regular approximation of nonlinear equations involv-

ing the numerical ranges of Banach space operators.

We define the numerical range of an operator A : X -* X, denoted n[A], by

The numerical range n[A] has properties similar to those of the Zarantonello

numerical range N[A], defined as [17]

where X is a Hubert space and (•, •) is the standard inner product on X.

Clearly, n[A] reduces to N[A] when X is a Hubert space. Let us describe

some of the elementary properties of n[A].
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Theorem 3.1. Let A, B: X -> X be mappings from a real Banach space X into

itself and X £ K (field). Then

(i) n[XA] = Xn[A],
(ii) n[A + B]C n[A] + n[B], and

(iii) n[A-XI] = n[A]-{X}.

Proof. The proof follows from the definition.

Theorem 3.2. Let X be a real separable Banach space and its dual X* uniformly

convex. If A: X -» X is bounded and continuous, and a number X £ K is at a

positive distance a from the numerical range n[A] of A, that is,

a = inf{\X- p\: p £ n[A]} > 0,

then the following implications hold.

(i) Ifb£X, \\x\\ >y> \\(A-XI)(0)- b\\/a for some x£X, y>0,then
[(A-XI)x-b,Jx]>0.

(ii) For b £ X, y > 0, and [(A - XI)x - b, Jx] > 0 with \\x\\ = y, we
have P„(A - XI)xn = P„b for some x„£ Xn, \\xn\\ < y, n £ N.

(iii) Pn(A-XI)^(A-XI).
(iv) For b£X and y > \\(A - XI)(0) - b\\/a, we have

Sn = {x„ £ Xn: Pn(A -XI)xn = Pnb,  \\xn\\<y,  n £ N} ¿ 0.

(v) The equation (A - XI)x = b has a unique solution x for \\x\\ < y.

(vi) Sn - {x}.

Proof. Since the proof follows from an application of Theorem 2.4, it would

suffice to show that A - XI is strongly accretive. For x, y £ X, x ^ y, we get

\[(A-XI)x-(A-XI)y,J(x-y)]\

= \[Ax - Ay, J(x - y)] - X[x - y, J(x - y)]\

\[Ax-Ay, J(x-y)]

y\\2

-X \\x-yr

><*\\x-y\\2.

Remark 3.3. Theorem 3.2 reduces to the case of the Zarantonello numerical

range when X is a Hubert space.
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