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KRULL DIMENSION OF MODULES AND INVOLUTIVE IDEALS
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(Communicated by Ken Goodearl)

Abstract. In this paper we establish an upper bound for the Krull dimension

of a module over a Weyl algebra in terms of a geometrical invariant of its char-

acteristic variety, the involutive dimension. This is followed by some examples

which show that this inequality may be strict.

1. Introduction

In this paper we show that the Krull dimension of a module over the Weyl

algebra is related to geometrical invariants of the characteristic variety of that
module. We begin with a survey of a few basic facts about modules over the

Weyl algebra and their characteristic varieties.
Let An denote the nth Weyl algebra over the field of complex numbers C.

The generators of the algebra An will be denoted by x¡ and d¡ = d/dx¡ for
I < i < n . We endow A„ with the Bernstein filtration, obtained by giving each

x¡ and each <9, degree one. The kth step in this filtration will be denoted by
A„(k). We write S„ for the graded ring of An with respect to the Bernstein
filtration and Sn(k) for its kth homogeneous component. The symbol of order

k is the canonical map ak: An(k) -» An(k)/An(k - 1) = Sn(k). Thus Sn is
a polynomial ring in the 2« variables yi, ... ,y2„, where y, = ax(x¡) and

Vi+b = o\(di) for 1 < i< n.
Let { , } denote the Poisson bracket of S„ associated to the standard sym-

plectic structure of C2" . The Poisson bracket is a bilinear and skew symmet-

ric operation in Sn which satisfies the Leibniz rule: if /, g, h £ S„, then

{/> gh} — g{f, h} + h{f, g}. It may be used to calculate the symbol of a
bracket of two operators in A„ as follows: If d £ A„(k) and d' £ An(m), then

ak+m_2([d, d']) = {ak(d), am(d')}. For more details see [1] or [10].

Let M be a finitely generated left ¿(„-module and F a good filtration of M.

By that we mean a filtration of M for which %rF M is finitely generated over

Sn . Let I(M) be the radical of the annihilator of grf M in S„ . Note that
I(M) is a homogeneous ideal of S„ . The ideal I(M) is called the characteristic

ideal of M and its variety char(AZ) in C2" , the characteristic variety of M.
Both I(M) and char(Af ) are independent of the choice of the good filtration
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used to define them and hence, are invariants of M. The dimension d(M) of

char(Af) equals the Gelfand-Kirillov dimension of M.
The ideal I(M) is an involutive ideal of S„ with respect to the Poisson

bracket defined above, namely, {I(M), I(M)} ç I(M). Equivalently, the vari-

ety char(A/") is involutive in the sense that its tangent spaces are co-isotropic for

the standard skew-symmetric form in C2" ; see [1]. The involutivity of I(M)

was proved by Gabber in [3] using purely algebraic methods. An important

consequence of the involutivity of I(M) is the inequality d(M) > n .

Let us now review some of the results that relate invariants of the charac-
teristic variety and the Krull dimension of ^„-modules. Let M be a finitely
generated left /l«-module, with Krull dimension Kdim(AZ). It follows from

[8, Corollary 8.5.6] that d(M) > Kdim(M) + n. Björk had conjectured in [2]
that the equality holds in the formula above. This, however, is false. Stafford

showed in [9] that there exist simple ^„-modules of Gelfand-Kirillov dimension
2n - 1 ; his example is also discussed in [5, Chapter 8].

Following a suggestion of J. T. Stafford we consider in this paper another

formula for the Krull dimension of modules over the Weyl algebra. This is

inspired by results of Bernstein and Lunts in [1] and [7]. For a finitely generated

left ^„-module M, let ß(M) be the length of the longest chain of involutive

homogeneous irreducible subvarieties contained in char(Af). We prove in §2
that Kdim(M) < ß(M) and that d(M) > ß(M) + n. However, both these
inequalities may be strict, as shown by the examples of §3.

2. Involutive dimension

We begin with the definition of a new dimension for ideals of Sn . Let I

be a homogeneous ideal of Sn ■ The involutive dimension of /, denoted by
/?(/), is the length of the longest chain of homogeneous involutive prime ideals
containing I. Let M be a finitely generated left ^„-module. It is convenient to

define the involutive dimension of M, denoted by ß(M), to be the involutive
dimension of I(M) ; namely ß(M) = ß(I(M)). This is equivalent to the

definition in terms of char(M) given in the introduction. We proceed to state

some of the properties of the involutive dimension. Our first lemma is a well-

known result; we include a proof for the sake of completeness.

Lemma 2.1. Let I be a homogeneous involutive radical ideal of S„ . The primes

minimal over I are homogeneous involutive prime ideals of S„ .

Proof. Let P be a prime ideal minimal over /. It is easy to show that P
must be homogeneous; we show that it is involutive. Let a, a' £ P; we

shall prove that {a, a'} £ P. Let J be the intersection of the prime ideals

minimal over I and different from P. Let b G J\P. Since JP ç /, we must

have that {ab, a'b} £ I ç P, but {ab, a'b} = {ab, a'}b + {ab, b}a'. Thus
{ab, a'}b £ P. Since P is prime and b $ P, one has that {ab, a'} £ P.
Once again, {ab, a'} = {a, a'}b + {b, a'}a, from which we conclude that

{a, a'} G P, as required.

Recall that the coheight of an ideal I of Sn is the length of the longest chain

of prime ideals of S„ that contain I. It will be denoted by coht(7).

Lemma 2.2. If I is an involutive ideal of Sn , then ß(I) < coht(7) - n .
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Proof. Let Po c Px c ■■■ c Ps be the longest chain of involutive homogeneous
prime ideals containing I. Then coht(Z) > ß(I) + coht(Ps). Since Ps is an
involutive ideal, coht(f'J) > n . Hence coht(/) > ß(I) + n .

Let y be a left ideal of An . The symbol ideal of J is

<7(j) = Y/(°k(JnAn(k)).
k>0

It is an ideal of S„. The next result collects some of the properties of the

involutive dimension. In particular it follows from Proposition 2.3(b) that ß

is an exact dimension function in the sense of [8, 6.8.4]. On the other hand,

Proposition 2.3(d) is a generalisation of [1, Theorem A].

Proposition 2.3. The involutive dimension of a finitely generated left An-module

M satisfies
(a) ß(M) - max{ß(P), P a prime minimal over I(M)}.

(b) If 0 —> M' —> M -» M" -> 0 is an exact sequence of finitely generated
An-modules, then ß(M) = ma\{ß(M'), ß(M")} .

(c) d(M) > ß(M) + n .
(d) If J is a left ideal of An such that a(J) is prime and ß(o(J)) = 0,

then J is a maximal left ideal of An . In other words, An/J is a simple left
A„-module.

Proof. Note that (a) follows from Lemma 2.1 and the fact that I(M) is a

radical involutive ideal of S„ whilst (c) follows from Lemma 2.2. To prove

(b), note that I(M) = I(M') n I(M"). Thus, if P is a prime ideal of S„,
then it contains I(M) if and only if it contains either I(M') or I(M"). The

equality follows immediately from this and (a).

Finally, we prove (d). Suppose that L is a left ideal of A„ that properly

contains J . Thus a(J) c a(L) ç S„. Taking radicals and recalling that a(J)
is prime, one obtains the proper inclusion, a(J) c rad(cr(L)). But rad(<x(L)) =

I(A„/L) is an involutive homogeneous radical ideal of Sn . Since ß(a(J)) = 0,
we must have that ß(md(a(L))) - 0. But a(J) is prime and the inequality

a(J) C rad(er(L)) is proper. Hence rad(cr(L)) = Sn and L — An.

Now we shall prepare the ground for the proof that the involutive dimension

is an upper bound for the Krull dimension. The main step in the proof of

this result is Theorem 2.6. Its proof makes use of the multiplicity of an An-

module at a prime ideal of S„ , which we briefly describe. Let M be a finitely
generated left ^„-module with a good filtration F and P a prime ideal of S„ .

The multiplicity mP(M) of M with respect to P is the length of the (£„)/>-
module (grf M)P . The multiplicity thus defined is independent of the good

filtration F used to calculate it and is additive over short exact sequences of

yi„-modules. The multiplicity also satisfies the following property: mp(M) is

finite and nonzero if and only if M ¿ 0 and P is a prime ideal minimal

over I(M). For details see [1, §3] and [6, Chapter V, Proposition 2.7]. In

the proof of the theorem we use that, under certain circumstances, the length

of a descending chain of ^„-modules is bounded by the multiplicity. This is
the content of the following lemma. We omit the proof, as it is easy and very
similar to [5, Corollary 7.8].
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Lemma 2.4. Let M be a finitely generated left An-module and P a prime min-

imal over I(M). Suppose that M = M0 D Mx D ■ ■ ■ D Ms is a strictly descend-

ing chain of submodules of M for which P is minimal over I(M¡/Mi+X) for

i -0, 1,2, ... . Then

(a) mP(M/Mi) = ££JmP(Mj/Mj+x),
(b) s < mP(M).

One more technical lemma is necessary before we come to the proof of the

theorem.

Lemma 2.5. Let M be a finitely generated left An-module and N a submodule

of M. If P is a homogeneous prime ideal of S„ minimal over I(N) and P

does not contain I(M/N), then P is minimal over I(M).

Proof. Since I(M) = I(N) n I(M/N), it follows that P contains I(M). Sup-
pose that P is not minimal over I(M). Thus there exists a homogeneous

prime ideal Q such that I(M) ç Q c P. In particular I(N) • I(M/N) C Q.
Since I(M/N) is not contained in P, we must have that I(N) ç Q. But this

contradicts the fact that P is minimal over I(N).

We want to show that the Krull dimension of a module is bounded above

by its involutive dimension. Following [8, Chapter 8], it is enough to prove

that A„ is finitely partitive for ß. Recall that An is (left) finitely partitive

for ß if given any finitely generated left ^„-module M, then every chain

M = M0 2 Mx 2 ■■■ of submodules of M, such that ß(Mi/Mi+x) = ß(M)
for all i > 0, must terminate. This is the weaker definition of finitely partitive,

proposed in [8, 8.7.3].

Theorem 2.6.  A„ is finitely partitive for the involutive dimension.

Proof. Let M be a finitely generated left v4„-module. Suppose that M = Af0 3
Mx D ■■■ is a chain of submodules of M such that ß(Mj/Mi+x) = ß(M) for

i = 0, 1,2,....
Let P be the (finite) set of homogeneous involutive prime ideals minimal

over I(M). Given i £ N we have that I(Mi/Mi+x) D I(M) and ß(Mi/Mi+x) =
ß(M) ; thus at least one prime ideal in P must be minimal over I(Mj/Mi+x).
Since P is finite, there exists a prime P £ P which is minimal over infinitely

many of the ideals I(Mj/M¿+x).
Now if P is minimal over I(Mi/Mi+x) but not over /(à/,_i/M,), then

by Lemma 2.5 it is minimal over I(M¿-X/Mi+X). Thus by deleting from the
sequence M = Mo D Mx D ■ • ■ the terms M¡ whenever P is not minimal over

I(Mj-X/Mj), we obtain an infinite subsequence

M = N0D Nx D N2D ■■■

for which P is minimal over all I(N¿/N¡+X). But this contradicts Lemma 2.4

and completes the proof of the theorem.

Corollary 2.7. The involutive dimension of a finitely generated left An-module

M satisfies:

(a) d(M) >ß(M) + n> Kdim(M) + n .
(b) If ß(M) = 0, then M is a module of finite length.
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Proof. The first inequality in (a) follows from Proposition 2.3(c). The second

inequality follows from the fact that A„ is finitely positive for ß (see [8, 8.7.3

and 8.3.18], whilst (b) follows from (a).

Note that the inequalities above may be strict. This is illustrated in the next
section, where several examples are discussed. It is perhaps worth observing

that most of the above can be generalized to almost commutative rings.

3. Examples

We now discuss some examples for which the inequalities of the previous

section are strict. Consider first d(M) > ß(M)+n. Bernstein and Lunts showed
in [1, 7] that for most operators d £ A„, n > 2, the module M = A„/A„d

satisfies ß(M) - 0. Since d(M) = 2« - 1, the inequality is strict in this case.

We now turn to Kdim(M) < ß(M) .Letd = dx + (l +Àxxx2)d2+x2 . Stafford
showed in [9] that the module M = A2/A2d is simple. Thus Kdim(M) = 0.
But I(M) is the ideal generated by yiy2V4 in S2. Hence (y4) is a prime ideal

minimal over I(M). But (y4) ç (y3, y4) and (y3, y4) is involutive. Hence,

ß(M) = 1, and we conclude that Kdim(Af) < ß(M), in this case.

The characteristic ideal of M, in this last example, is not prime. However,
even when the characteristic ideal is prime, the inequality Kdim(Af) < ß(M)

may be strict. To construct such an example, we shall use a result of Bernstein

and Lunts [1]. Let Vk be the space of vector fields on C2 of the form Pxdx +
P2d2, where Pi and P2 are polynomials of degree < k - 2 in xx, x2. For

a vector field £ in C2 and a singular point s of ¿¡, let A(<^, s) denote the

subgroup of C generated by the eigenvalues of the linear operator on TSC2,

defined by the one-jet of Ç.
Given a vector field £ = Pxdx+P2d2, let Yt be the hypersurface Px(yx, y2)yi

+ Pi(y\, yijy* = O of C4. Thus Ys is involutive with respect to the standard

symplectic structure of C4. It is also conical, that is, homogeneous with re-

spect to the variables y3 and y4 . We say that Y¿ is minimal if the only invo-

lutive conical variety contained in Y¿ are of the following type: Z(y$, y4) or

Z(yx-ax, y2-a2), for a point (ax, a2) e C2 . In other words, C4 is the cotan-

gent bundle of C2 , and Y( is minimal if its only involutive conical subvarieties
are the zero section or fibres of this bundle.

Theorem 3.1. Let k > 4 and t\ £ Vk. Suppose that Y¿ is minimal and that

t\ has a finite, nonempty set of singular points in C2. Choose a polynomial

f £ CfjCi, X2] such that, for each singular point s £ C2, f(s) £ A(¿¡, s). Then
the operator £, + f generates a maximal left ideal of A2.

Before this theorem is put to use, we must obtain vector fields t¡ for which

Yç is minimal. First of all, we endow Vk with the topology of affine space. The
natural structure follows from the fact that Vk is a complex vector space with

basis x[xs2di, where r + s < k-2 and ï = 1,2. The corresponding coordinate

functions will be denoted by zrs¡. We say that a property I holds generically

in Vk if the set {<Je F¿:I does not hold for £} is contained in the union of

a countable number of hypersurfaces in Vk . The next result is a consequence
of [1, Theorem 5].

Theorem 3.2. The property "7^ is minimal" holds generically in Vk for k>4.
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The example is constructed as follows.

Theorem 3.3. Let 4 < k < 7 be an integer. There exists d £ A2 which satisfies:

(a) A2d is a maximal left ideal of A2 .
(b) d has degree m = k - 1 for the Bernstein filtration, and the hypersurface

o~m(d) = 0 in P3(C) is an irreducible homogeneous subvariety of P3(C).

(c) am(d) is contained in the ideal generated by yx and y2 in S2.

In particular, A2/A2d is a simple module, but I(A2/A2d) is prime and has

involutive dimension 1.

It is better to isolate part of the proof in a lemma. If P £ C[xx, x2], denote

by Pk the homogeneous component of degree k of P.

Lemma 3.4. Suppose that k > 4. Let X be the set of all vector fields Pxdx+P2d2
in Vk such that at least one of the three conditions below is satisfied:

(I) Pf"2 • p\-2 = 0.
(II) Pi and P2 have a common factor.

(Ill) Pxk~2 and P\~2 have a common factor.

Then X is contained in a union of hypersurfaces of Vk .

Proof. Let Ç = Pxdx + P2d2 be a vector field in X. If Ç satisfies (I), then it
is contained in the union of the hypersurfaces of equations zk_2 o ¡: = 0 for

i=l,2.
Suppose that Pi, P2 have a factor in common. We may assume that z^-2,0,1

5¿ 0 for i = 1,2. Thus Pi and P2 are monic as polynomials in xx. If

they have a common factor in C[xx, x2], then they have a common factor in

C(x2)[xi]. Hence the resultant ResX[ (Pi, P2), with respect to Xi, is identically

zero. The coefficients of this resultant with respect to x2 are polynomials in

zrsi. Equating one of these coefficients to zero we have a hypersurface that

contains £. Thus t\ is contained in a union of hypersurfaces when (II) holds.
One may deal with (III) in a similar way.

Proof of Theorem 3.3. By Theorem 3.2 and Lemma 3.4, there exists t\ £ Vk such
that Yç is minimal and (I), (II), and (III) are not satisfied by £. Let5i stand

for the set of singular points of £. We show that Sç is finite and nonempty.

Let C = Pxdx + P2d2, where Pi, P2 are polynomials of degree < k — 2.
A singularity of t\ is a zero of the system Px = P2 = 0. Write Wx and W2 for

the curves of P2(C) that correspond to the sets of zeros of the homogenizations

of P and P2, respectively. Then Wx n W2 ¿ 0. Let w £ Wx n W2. If w
belongs to the line at infinity, then its homogeneous coordinates are [a : ß :

0]. Hence (a, ß) is a zero of Pk~2 and Pk~2. Since these polynomials are

homogeneous, this implies that they have a common factor, contradicting (III).

Thus w must be a finite point, and so w £ Sç ^ 0 .

Since Pi and p> do not have a common factor, we may apply Bezout's

Theorem and conclude that S^ contains at most (k - 2)2 elements. We will

use this to show that there exists a polynomial Q £ C[xx, x2] of degree < k - 1

which has the elements of Sç for zeros. This is the place in the proof where

we need to have that k < 1.
Let U(k) be the vector space of polynomials in C[xi, x2] of degree < k- 1.

Put S/> = {si,..., sn}. Consider the linear mapping <j>: U(k) -> C" defined by

<t>(Q) - (Q(si),... , Q(sn)). Since dimf7(A:) = ('+*) = (k2 + k)/2, it follows
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that dim U(k) > (k-2)2 > n for k>l. Thus tf> has a nonzero kernel. Hence

there exists 0 ^ Q £ U(k) such that Q(s) = 0 for every s £ S¿.

Now let L c C denote the union of the A(¿¡, s) for every s £ S¿. There are

at most 2-(k-2)2 such eigenvalues. Choose a complex number a algebraically

independent with the set L. Put / = Q + a. For each se5{ one has that

f(s) = Q(s) + a = a ^ A(£, s). Thus we may apply Theorem 3.1 to the

operator d - Pxdx +P2d2 + f and conclude that the left ideal A2d is maximal.

Hence (a) is verified.

Let G = ak_x(d) = Pk~2(yx, y2)y3 + Pk~2(yx, y2)yA + Qk~x(yx, y2). Note

that G is linear in y3, y4. If it were reducible, then at least one of its fac-

tors would be a nonconstant polynomial in yi, y2. But this is not possible,

because Pk~2 and P\~2 have no common factor. Thus G must be irreducible

homogeneous polynomial. Therefore, the ideal (C7) in 52 is prime, and G = 0

defines an irreducible hypersurface in P3(C).

That G c (yx, y2) is immediate; thus (c) is also verified. Since (yi, y2)
is obviously prime and involutive, it follows that ß(A2/A2d) > 1. Thus, by
Corollary 2.7, ß(A2/A2d) = 1, and the proof is complete.

The fact that the inequality Kdim(M) < ß(M) may be strict admits a geo-

metrical interpretation. It is closely related to the breakdown of the following

extension property for left ideals of A„ . Let / be a left ideal of A„ . Suppose

that P is a homogeneous prime ideal of height 1 over rad(o(J)). Is there

a left ideal L of A„ such that J ç L and P is minimal over rad(ff(L)) ?
A counterexample to this extension property is provided by the ideal A„d of

Theorem 3.3. In fact, if J = And, then rad(a(J)) - (G) is a prime ideal. The
prime ideal (yi, y2) has height 2 and contains (G), which has height 1. Hence
(yi > y2) has height 1 over (C7). But J = A„d is maximal; hence the extension

property must fail in this case.

Let us end with a question related to the above extension property, the answer

to which does not seem to be known. Let J be a radical involutive homogeneous

ideal of Sn . Is there a finitely generated left ^„-module M such that I(M) —

Jl On this question, see also [10, Chapter I, Theorem 6.21] and [2, Chapter 4,
Theorem 6.5].
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