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Abstract. Let sf be a completely distributive CSL algebra and let M be

any c-weakly closed sf -module. We give characterizations of commutant

C(sf , M) of sf modulo M and AlgLat M. Furthermore, we deal with
the relations among sf , C(sf , M) and AlgLat M .

1. Preliminaries and notation

Throughout this paper, H will denote a complex Hilbert space, and L(H)

will denote the Banach algebra of all bounded linear operators from H into

itself. Let -S* be a commutative and completely distributive subspace lattice

on H and let sf = AlgJ? ç L(H). A subspace Jt of L(H) is said to be a
sf -module if sfJi = Jfsf ç Jf. Any a -weakly closed sf -module is denoted
by M and the set of all F-generators of f? is denoted by &. The terminology

and notation of this paper concerning reflexive operator algebras may be found

in [1, 3, 4]. It is known from [3] that M has the form

M = {T £ L(H): TECÉ for all E £ S?}

where E\—> E is some lattice homomorphism of Sf into itself. Thus we need

only consider M determined by the homomorphism E\ —> E .

2. Commutants relative to <t-weakly closed sf -modules

In [1] the authors found that C(Algyzr, M) = ^M © M for a nest A,
where Wm is a weakly closed subspace (is also a subalgebra) of the core of
Algyf. A natural question is: Does this hold for 2"\ In this case when

M D sf Han Deguang proved C(sf, M) = M [3]. Generally, we obtain

C(sf, M) = Wm(G) © M, where *%m(G) is a weakly closed subspace of the
core of sf.

We omit the proof of Lemma 2.1 as it follows by modification of the argu-
ments in [4, p. 505].
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Lemma 2.1. If T £sf', then each M-generator of S? is contained in an eigen-

space corresponding to the eigenvalue X of T and \\X\\ < \\T\\.

Lemma 2.2. If E£¿f and T £ C(sf , M), then

(i) (/ - É)TEG = XTE(G)(E - EE)G and \XTE(G)\ < \\T\\, where G is any
V-generator of J? and Xte(G) isa number depending on T, E, and G;

(ii) ifÉE<FF<E<F

Xte(G) = Xtf(G) ,

where F £ S?, and Xte(G) and Xjf(G) are as in (i).

Proof, (i) Since Ees/ , I -È £sf , and T £ C(sf , M)

(I - É)(TE - ET)E = 0,        (/ - Ë)[T(I - É) - (I - É)T]E = 0.

Therefore
(/ - É)T(E - EE) = (I - E)TE = (E - EE)TE

and hence
(/ -Ë)TE = (E- EE)T(E - ÊE).

Now for any A £sf

(I-E)(TA-AT)E = 0

and since (E - ÊE)A(E - ÊE) £ sf

(I - É)TE[(E - ÊE)A(E - ËE)] - [(E - ÈE)A(E - ÉE)](I - É)TE

= (/ - É)[T(E - ÈE)A(E - ÊE) - (E - ÊE)A(E - ÉE)T]E = 0.

This means that (/ - É )TE = (E- ÉE)T(E - ÊE) £ [(E - ÊE)sf (E- ÊE)]'.
Apply Lemma 2.1 to the compression of sf to the range of E - ÊE

(I - É)TEG = [(E - ÉE)T(E - ÉE)][(E - ÊE)G(E - ÊE)]
= XTE(G)[(E - ÉE)G(E - ÊE)]

= XTE(G)(E-ÉE)G,

\Xte(G)\<\\(E-ËE)T(E-ËE)\\<\\T\\.
(ii) Observe

(E - ËE)T(E - ÊE)G = XTE(G)(E - ËE)G,

(F - FF)T(F - FF)G = XTF(G)(F - FF)G.

Multiplying the above on either side by E - ËF , we obtain

(E - FF)T(E - FF)G = XTE(G)(E - FF)G,

(E - FF)T(E - FF)G = XTF(G)(E - FF)G.

Thus

Xte(G) = Xtf(G),

and (ii) follows.

Remark 2.3. Lemma 2.2 shows that for T £ C(sf , M) and G £ &, XTe(G)

has a constant value on the intervals (EXEX, E2] and (E2E2, Ex] if intervals

(ÉXEX, Ex) and (É2E2,E2) overlap. It follows easily that Xte(G) is constant

on each maximal connected component of U{(^£, E]: E £ Sf} .
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Definition. The element F of ¿f is ~ connected to E (notation E < F or

F >E) if E = F or E < F and exists a finite chain E„ < ■■■ < Ex < È0 = F

with E¡Ei < Ei+X   (0 < i < n - 1) and ÊnE < E.

Let 2o = {E £ S?: ÊE < E} . For each E £ Ji6 we define the ~-component
y(E) of E by

y(£) = {F £ Sf: F < E} U {F e ^: F > E}.

Clearly, 3q is a disjoint union of ~-components and it is easy to see that

^-components are intervals. We may write

-^o = (J 7(u
«en

where £2 is some index set and {ym: ídííí} are pairwise disjoint intervals

with left end point Ea and right end point Fw .

For fixed T £ C(sf, M) and F £ 2C, it is possible that Gx, G2 £ &
and Gx î G2 but Xtf(Gx) = Xtf(G2) . Let Gjf(o) be the closed linear span
of all V-generators of 5f corresponding to the same eigenvalue Xtf (a) of

(/ - Ë)TF, where a € A and A is some index set. Lemma 2.2 shows that

Gte(oi) = Gtf(o)

for all E, F £ ym ; we denote it by GT(a(o() ■ Clearly, GT(0(a) £ Sf and

/ = \la£A ̂ Tm(oi). If T £ C(sf , M), co £ Q are given and E £yw, then

(E - EE)GTw(a)GTm(ß) = GT<a(a)GTw(ß)(E - ËE)

= ((E-ÊE)GTœ(a)     ifa = ß,

"lO if a ¿ ß.

Denote by WM(G) the weakly closed linear span generated by the projections

{(Fw - Em)GTw(a) : T £ C(sf , M), œ £ Q, and a £ A} .

Theorem 2.4. C(sf , M ) = ^m(G) © M, where the sum is a direct sum of vector

spaces.

Proof. Suppose T £ C(sf, M), œ £ Q, and a £ A are given. For any

E £ Sf, there is a ~-component y<u0  of <&o such that E £ yœo.   For any

A £sf , if ft)o/W,

(/ - Ë)[A(FW - E^GMa) - (Fa - Ew)GT(ü(a)A]E = 0 ;

if (Oo = oj, then for any ß £ A

(E - ÊE)[AGTa(a) - GTw(a)A](E - EE)GTü}(ß)

= (E- EE)GTm(a)GTü)(ß)A(E - EE)GTw(a)GTlü(ß)

-(E- EE)GTlo(a)GTco(ß)A(E - EE)GTw(ß)
= 0.
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Hence

(/ - É)[A(FW - Ew)GTa)(a) - (Fw - Ea)GTlo(a)A]E

= (I- É)A[(I - É)(FW - Ea)E]GT<o(ct) - [(I - Ê)(FW - Ew)E]GTw(a)AE

= (E- ÉE)[AGTa)(a) ~ GTw(a)A](E - ÊE)

= {E- ËE)[AGTm(a) - GTa(a)A\(E -ËE)[\j GTw(ß)
\ßeA I

= 0,

so for all S £ WM(G)

(I - E)(AS - SA)E = 0.
This shows that S £ C(sf , M), and thus the inclusion WM(G)+M C C(sf , M)
follows.

Now suppose T £ C(sf , M) ; then it follows from Lemma 2.2 that if yWo is

any ~-component of 3o and E £ yWo, we have

(/ - É)TEGTa>0(a) = XTwo(a)(E - ËE)GToj0(a)

where XTco0(oí) is a number depending on T, yWo, and a. Define TM by

Tm = Yl 5Z kT<o(a)(Fa> - F^GrUa) ■
(oeciaeA

By Lemma 2.2, |A7a>(a)l < II^11 ; hence, the series converges in the strong
operator topology and TM £ %¡(G).

For any ß £ A

(I - Ê)(T - TM)EGTwo(ß) = (I- E)TEGT<o0(ß) - (I - E)TMEGT(0o(ß)

= XT(O0(ß)(E - EE)GTtü0(ß) - XTtu0(ß)(E - EE)GTo>ü(ß)

= 0.

Hence

(/ - É)(T - TM)E = (I- Ê)(T - TM)E ( \J GTc0o(ß) ) = 0

\ß€A J
andT- TM £ M. Therefore T £ WM(G) + M.

To prove that the sum is direct, if T £ %?m(G) , then for each co £ Q and
any ß £ A

T(FW - Ew)GT(ü(ß) = XTlo(ß)(Fw - E^GrUß)-

If also T £ M, choose E £ ym

0=(I- E)TEGTw(ß) = XTw(ß)(E - EE)GTw(ß).

Thus XTw(ß) = 0 for each co £ ii and each ß £ A, and

T(FW - Ew) = T(FW -EW)[\J GTw(ß) ) = 0.

Therefore T = 0. The proof is completed.
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3. The operator algebra generated by a module

In this section, first we prove that AlgLat M = WM® (M), where (M) is the

weakly closed algebra generated by M. Furthermore, we deal with the relations

among AlgLat M, C(sf , (M)), and sf .
Lemma 3.1 is the analogue of Lemma 1.10 in [1], thus we omit the proof.

Lemma 3.1. The weakly closed algebra generated by M is the module deter-

mined by E\ —> E, where

Ê=[Ë ifË<E,
\\J{ÊW:n>0}     ifE^E.

Lemma 3.2 [3]. P £ LatM if and only if there exists some E £ Sf such that

Ë<P <E.

Theorem 3.3. AlgLat M = ^ © (M), where ^m is the weakly closed algebra

generated by {Fw - Ew: co £ Q0} ■ Fa and Em are the end points of the ~-

components of {E £ Sf: É < E}, Q0 Q ß > and (M) is the weakly closed
algebra generated by M.

Proof. Clearly AlgLat M = AlgLat(Af). Since ^m depends only on the ele-

ments E of Sf such that Ê < E, Lemma 3.1 shows that Wm — W(M) • Thus
we need only prove the equation

AlgLat(AZ) = W{M) © (M).

That AlgLat(Af) D ^{M) + (M)  is obvious.   Let  T £ AlgLat(Af).   From

Lemma 3.2 for all E e Sf with Ë < E and any G<E-ËZ É © G £ Lat T.
Thus (E - E)T(E - E) leaves every subprojection of E - E invariant. This

means that

(E - E)T(E - E) = XTE(E - Ë)
for some scalar Xte ■ Note that E £ Lat(Af ) Ç Lat T ; we have

(/ - Ë)TE = (E- Ë)T(E - Ë) = XTE(E - Ë).

If E and F are in the same ~-component it follows as in Lemma 2.2 that

Xte = Xtf ■ The proof is now completed by modification of the arguments in
Theorem 2.4.

Definition. M is said to have property (*) if for any T £ C(sf , M), E £Sf,

there is a number Xte such that

(E - Ë)T(E -Ë)= XTE(E - Ë).
The following facts are easily seen.

(i) M D sf iff É > E for all E £ Sf ;
(ii)   MCsf iff E < E for all E £ Sf ;

(hi) WM(G) ç sf .

We can prove the following results by the above facts and Theorems 2.4 and

3.3.

Corollary 3.4. Let (M) be the weakly closed algebra generated by M. Then

(i) AlgLatA/CC(j/, (A/));
(ii) ifMDsf, then AlgLat M = (M) and C(sf , M) = M ;

(iii) if M çsf , then AlgLat M ç C(sf ,M)çsf.
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Furthermore, AlgLat M = C(sf , M) iff M has property (*) ;   C(sf , M) =

sf iff (E - Ë)(AXA2 - A2AX)(E - Ê) = 0 for all Ax, A2£sf and E£Sf.
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