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UNIQUENESS OF MAXIMAL ENTROPY ODD ORBIT TYPES

WILLIAM GELLER AND BENJAMIN WEISS

(Communicated by Barbara Lee Keyfitz)

Abstract. We prove that the maximal entropy orbit types of odd period for

interval maps are unique. In fact we prove that they are uniquely maximal

among all (not necessarily cyclic) permutations.

1. Introduction

Periodic orbits of interval maps can be classified combinatorially using the
order inherited from the interval. For a continuous map, the existence of a
periodic orbit of a given type typically entails the existence of many other orbit
types and implies a lower bound on the topological entropy of the map. Several
authors have studied the implications among orbit types and the relation be-

tween orbit types and entropy, including for example [Be, BCop, BGMY, GT,

J] and the systematic treatment of [MN].

If Pi <•••< pn is any periodic orbit of a (continuous) map / of a com-
pact interval, we define the type of this orbit as the cyclic permutation 6 on

{1, ... , zz} given by 9(i) := j if f(p¡) — p¡, 1 < i < n. More generally, if
S = {px,... , p„}, px < •■■ < Pn, and f(S) = S, we define the type of the
finite invariant set S to be the permutation 6 given as before by 9(i) :- j if

/(Pi) = Pj ■
We write C„ for the set of all possible orbit types, or cycles, of period zz,

and P„ for the set of all permutations on {1, ... , zz}, and set C := (Jn>1 Cn ,

The dual of a permutation 6 £ Pn is the permutation 8 £ P„, 8(i) =

n + 1 - 6(n + I - i), so that 6 is 6 conjugated by a reversal of orientation.

Definition 1 [MN]. The entropy of an orbit type 6 £ C is

h(9) :- inf{h(f) : / is a map with an orbit of type 6}.

Here h(f) is the topological entropy of the map /. Since the topological
entropy of a map represents its dynamical complexity in an appropriate sense,

the entropy of an orbit type 6 can be thought of as representing the dynamical

complexity required for any map with a periodic orbit of type 6.
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More generally, if 9 £ P, we define h(6) := inf\h(f) : f has an invariant

set of type 9}. It is easy to see that for all d £P, h(9) = h(d).
A permutation 6 £ P forces n £ P if every map having an invariant set of

type 9 also has one of type n .

In order to avoid handling the trivial case zz = 1, we establish the convention

that " zz odd" will mean " n > 1 odd" for the remainder of the paper.

For n odd, define / := \_(n-1 )/4J so that if zz = 1 (mod4), then n = Al+l
and if zz = 3 (mod 4), then zz = 4/ + 3 . Define the orbit type d„ of period zz

by
' n -21 - j if 1 < j < n - 21 and j odd ;

j - n + 21 + I   if n - 21 < j < n and j odd ;
j i—> <

n - 21 + j - I    if 1 < j < 21 and j even ;

, zz + 2/ - j + 2   if 2/ < j < n and j even.

It can easily be verified that the 9n are in fact cycles.

For example, using cycle notation we have 6XX = (1 6 11 528934 107).
Misiurewicz and Nitecki [MN] first considered these orbit types, with zz = 1

(mod 4).
It was proved in [GT] that the orbit types 9n have maximal entropy among

all zz-cycles, and in fact among all zz-permutations:

Theorem 1. For n odd, h(9„) = max{h(9): 9 £ Pn}.

We extend here the methods of [GT] to prove these orbit types are the unique

maximal entropy odd types (up to duality).

Theorem 2. For n odd, if n £ P„ and h(n) = max{h(8): 8 £ Pn}, then r\-9n

or ti = 9„.

When zz is even, the maximal entropy cycles are not known. However, it
is known that the maximal entropy permutations are not cycles, and come in

self-dual pairs, in contrast to the situation for zz odd. A forthcoming paper of

the first author and Zhang will address this.

2. Uniqueness

Proof of Theorem 2. For 9 £ Pn, define the primitive function fg on the interval

[1, zz] as the piecewise linear interpolation of 8. Define M(9) to be the (n — l)

by (zz - 1) matrix whose (i, j)th entry is 1 if fe([i, i + 1]) D [j, j + 1] and
0 otherwise. It is well known [BCop] that for 9 £ P, h(9) = logX where X is
the spectral radius of M(9).

For odd zz, let n £ Pn have maximal entropy, i.e., h(n) = max{h(9): 9 £

Pn}. We need to show that n = 9„ or n = 9n. Note that by the remarks

preceding Theorem 11.6 in [MN], z/ will not be forced by any other element

of P„ and f„ will be maximodal and have all maximum values above all min-

imum values. Here f„ maximodal means that it has a local extremum at

1, 2, ... , zz 6 [1, zz]. Since zz is odd and n is maximodal, either n or tj is

normalized, i.e., either f„ or fi¡ has a local minimum at 1 e [1, zz]. Without

loss of generality, assume r\ is normalized. Then we show that r\ = 9„.
Let rA = Xr, where A = M(9„) and h(6„) = logA, so that r is a (left)

Perron-Frobenius eigenvector for A and X is the spectral radius of A. Set

B — M(r\) so that X is also the spectral radius of B .
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Let s > 0. We define the matrix B£ = (BEU) by
u

n-l

Bh = Bu + e

n-l

l-Y[ô(Aij,Bu)
í=i

where <?(•,•) is Kronecker's delta. In other words, B\- - B¡¡ + e if the jth

column of B differs from the y'th column of A, and otherwise 2?f • = B¡j.

Then BE is irreducible.

This is true because Be has a positive entry wherever A has a positive

entry, i.e., if A¡¡ > 0, then Bej > 0, since either Bfj = B¿j - Ay > 0 or

B\j = Bij■ + e > e > 0. But we will see in the remark following Proposition 1

that A is irreducible; therefore Be is also irreducible.

Let k = (zz - l)/2. Consider the Euclidean space Rn~x = R2k . A vector w

in this space will be denoted for notational convenience as

w = (u,v) = («!,..., uk, vk,... ,Vx).

At this point we need to introduce a cone, first defined in [GT], which will
enable us to obtain more information about the relation between A and B .

Definition 2. We say that w belongs to the class of vectors 3s c R2k — {x £

R2k : x > 0} if the following two conditions hold:

(l.e) vk > uk > uk_x > vk_x > vk_2 > ■ ■ ■ > u2 > ux > vi, if k is even (i.e.,
if zz = 1 ( mod 4)).

(l.o) vk > uk > uk_x > vk_x > vk_2 > ■ ■ ■ > v2 > vx > ux, if k is odd (i.e.,
if zz = 3 ( mod 4)).

(2) vk-uk >uk_x -vk_x >vk_2-uk_2>---> (-l)k(vx -vx)>0.

Note that & is a closed subcone of the positive cone.

As we will see in Lemma 1, the eigenvector r is in the interior of £?, so there
exists e > 0 sufficiently small so that rA > rBe ; this follows from applying the

arguments of the proof of Proposition 10 in [GT] to those columns BW> of B

which differ from the corresponding column A1-^ of A (exchanging strict for

weak inequalities where necessary). Now let XE be the spectral radius of B£,

and let s£ be a right Perron-Frobenius eigenvector: BEse = XEse. Then

X(r,se) = (Xr,sE) = (rA,se) > (rBe, ss) = (r, Bese) =Xt(r,st).

This implies that X > X£ since r is nonnegative and nonzero and se is positive

by Perron-Frobenius and the irreducibility of BE.

But since Be is irreducible and Be > B, we would have XE > X unless

Be = B. So Bc = B = A and we are finished.   D

Lemma 1. If r is a (left) Perron-Frobenius eigenvector for A = M(9„), then it

lies in the interior of ¿P .

That r lies in 3a follows easily from the invariance of ¿P under the action

of A2, proved in [GT]. For the proof of Theorem 2, it is crucial that r is not

on the boundary of the cone ¿P .

The proof of Lemma 1 relies on Lemma 2.
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Lemma 2. Let n be odd, and let A = M(6„). If n = 3  ( mod 4), then

2 min(z, j, n — i, n — j) — 1     ifi + j = norifi odd

(A2)u = _
2min(z',;', n-i, n - j)

If n = 1   ( mod 4), then

and \n - i - j\ = 1

otherwise.

2min(z ,j,n-i,n-j)-l    ifi + j = nor if i even

(A2)ij =

2min(z, j, n- i, zz-;')

and \n - i - j\ = 1 ;

otherwise.

Lemma 2 can be obtained by a routine calculation, which we omit, from the

following fact, found in [GT]:

Proposition 1. Let n be odd, k = (n - l)/2, and A = M(9„). If k is odd, then

k - j + 2 < i < k + j + 1    for odd j <k-2;

k - j + 1 < i <k + j for even j < k - 1 ;

Aij = l iff I 2<i<2k
j-k-l<i<3k-j

I j - k < i < 3k - j + 1

If k is even, then

Aij = Uffl

k-j+1<i<k+j

k-j< i<k + j- 1

1 < i < 2k - 1

j-k<i<3k-j + l

for j = k;

for odd j > k + 2 ;

for even j > k + 1.

for odd j < k - 1 ;

for even j < k — 2 ;

for j = k;
for odd j > k + 1 ;

I j!- k + 1 < í < 3fc - j + 2    for even j > k + 2.

In both cases A is symmetric.

Note also that A is irreducible since its (k + l)th row and column contain

only ones.
For example, if zz = 11, so that k = 5 and 9„ = (1 6 11 5 2 8 9 3 4 10 7),

we have

A =

/0 0   0   0   0
0 0   0
0 0   0
0 1
0 1
1 1
1 1
0 0
0 0

\0 0   0   0

0   0 0\
0   0 0

1 0
1 0
1 1
1 1
0 0
0 0

0   0   0 0
o o o o)
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and

A¿ =

I1
2
2
2
2
2
2
2
1

Vi

2 2
4 4
6 6
8 8
8 9

2
4
6
8
9

2
4
5
7
7

1    1\
3   2

9
7
6
4
2

10   8   6
8    8   6
6
4
2

6   6
4   4
2   2

2
2
2
2
2
2
2
2/

Proof of Lemma 1. We describe here the case where n = 3 ( mod 4), i.e.,
zc = (zz - l)/2 is odd. The case when ze is even is handled similarly.

Let r - (ux,... , uk_x ,uk,vk, vk_x, ... ,vx) be a (left) Perron-Frobenius
eigenvector for A - M(9„), so in particular we have that r is (strictly) positive
and rA2 = X2r with X the spectral radius of A. We use this, together with
Lemma 2 and the fact that r £ & .

Note first that vx - ux = X2(v2 + vx - ux) > X2vx > 0, and of course ux > 0.
To verify that the inequalities in the first part of Definition 2 are in fact strict
for r, we first observe that for j - 1, 2,... , (k - l)/2, we have v2j+x > u2j+x

since v2j+x - u2j+x >vx - ux > 0, and similarly u2¡ - v2¡ >vx - ux > 0. To
see that for such j, v2j > Vy-x and uy+x > u2j, it suffices to notice that the

pth column of A2 dominates the (p - l)th (respectively (p + l)th) column for
p < k (respectively p > k) and has some entries strictly larger.

It remains to check that the inequalities in the second part of the definition
of ¿P are strict for r. We consider half of these inequalities at a time. For
j - 1,2, ... , (k - 3)/2, we have

(v2J+x - u2j+x) - (u2j - v2j) = v2j + v2j+x - (u2j + u2j+x)

= X2(2v2j + v2j+x + v2j+2 - u2j-x

> X2(2v2j - u2j-x -u2j)

>X\3v2j-2u2j_x)

>0.

Also,

Vk-i +vk- (uk_x + uk) = X2(2vk_x +vk- uk_2 - uk_x - uk)

>X2(2vk_x -uk_2-uk_x)

>X4(3vk_x -2uk_2)

>0.

Similarly, for j — 2, 3,..., (k - l)/2, we have

v2j-x + u2j - (v2j_x + v2j) = X2(2u2j-X + u2J + u2j+x - v2j-2 - v2J-x - 2v2j)

>X2(2u2j-X -v2J-2-v2j-X)

>X\3u2j-X -2zz2j-2)

>0

u2j-2u2j+x)



1922 WILLIAM GELLER AND BENJAMIN WEISS

and

ux+u2- (vx + v2) = X2(2ux + u2 + «3 - vx - 2v2)

>X4(3ux)

>0.    D
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