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Abstract. In an earlier paper, the author defined the isometry group of an un-

bounded Fredholm module over a unital C*-algebra. In this paper, the author

studies a class of unbounded Fredholm modules over a reduced group C*-

algebra, and he shows that the isometry groups of these unbounded Fredholm

modules are always compact Lie groups. The author also proves a result about

the fixed point algebra of such an isometry.

Let A be a unital C* -algebra. An unbounded Fredholm module (ß?, D)

over A consists of

(i) a Hubert space ß? and a representation of A on ßT ;
(ii) an unbounded, self-adjoint operator D on ß? such that

(a) the set {a £ A : [D, a] is densely defined and extends to a

bounded operator on ß? } is norm dense in A ;

(b) (I + D2)~x is a compact operator.

Unbounded Fredholm modules arise in a variety of contexts, including index

theory, AT AT-theory, and cyclic cohomology. In addition, Connes has shown [ 1 ]

that an unbounded Fredholm module serves as a sort of a "noncommutative"

metric for the underlying C* -algebra. With this in mind, the author defined in

[2] the isometry group of an unbounded Fredholm module:

Definition. Let A be a unital C* -algebra and let (ßif, D) be an unbounded

Fredholm module over A. The isometry group of (ß?, D) is denoted by

Iso(A, ßf, D), and is defined to be

Iso(A, ßT, D) = {(p £ Aut(A) : there exists a unitary U on ß? such that

UD = DU and <t>(a) = UaU* for every aeA).

The justification for calling this group an isometry group comes from the
following result (see [2] for details):
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Theorem. Let M be a compact oriented manifold, equipped with a Riemannian

metric g, let L2(A*(M)) be the Hilbert space of L2-forms on M, and let d+d*
be the deRham operator on L2(A*(M)). Then Iso(C(M), L2(A*(M)), d+d*)
is naturally isomorphic to Iso(M, g).

In this paper, we use length functions on a discrete group T to construct

unbounded Fredholm modules over the reduced group C*-algebra C*(Y) and
we show that, just as in the case of the isometry group of a compact Rieman-
nian manifold, the isometry groups of these unbounded Fredholm modules are
always compact Lie groups. In addition, we show that being an isometry with

respect to one of these unbounded Fredholm modules places strong restrictions

on what the fixed point algebra can be.

Length functions and unbounded Fredholm modules

Definition. Let Y be a discrete group. A length function on Y is a map L:Y —y

[0, oc) such that

(i)   L(e) = 0, where e is the identity element of Y ;

(ii)   L(g-*) = L(g) for all g in Y;
(iii)   L(gh) < L(g) + L(h) for all g, h in Y.

Word length with respect to a set of generators is obviously an example of a

length function.
Given a length function L, define DL on l2(Y) by DL(ôg) = L(g)ôg , where

ôg denotes the unit point mass at g £Y. Letting C*(Y) act on l2(Y) in the

usual way, it is natural to ask when (/2(T), DL) is an unbounded Fredholm

module over C*(Y). The following proposition clarifies Lemma 5 of [1].

Proposition. Let Y be a discrete group and let L be a length function on Y.
Then (12(Y),Dl) is an unbounded Fredholm module over C*(Y) if and only if
the range of L is unbounded and discrete and L is finite-to-one.

Proof. Suppose the range of L is unbounded and discrete and L is finite-to-

one. Clearly Dl is an unbounded self-adjoint operator. To show that [DL, X]

extends to a bounded operator on l2(Y) for a dense subset of C*(Y), it suffices
to show that [DL, Xg] extends to a bounded operator. We shall show more;

namely, that ||[7>¿, Xg]\\ = L(g) for all g in Y.
Fix g in T. For all h £ Y,

(Xg-^DLXg - DL)öh = (L(gh) - L(h))Sh ,

and hence

sup \L(gh) - L(h)\ = \\Xg-,DLXg - DL\\ = HV.[7)L > ̂111 = WWl , is]\l
her

To show that sup\L(gh) - L(h)\ = L(g), first note that \L(ge) - L(e)\ =
her

L(g), so sup\L(gh) - L(h)\ > L(g). Next, for all h in Y,
her

L(gh) - L(h) < L(g) + L(h) - L(h) = L(g).

On the other hand,

L(h) = L(g~xgh) < L(g~x) + L(gh) = L(g) + L(gh),
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or

-L(g)<L(gh)-L(h).

Thus sup \L(gh) - L(h)\ = L(g), as desired.
her

Finally, we show that (l+DL)~x is compact. First note that (l+D])~x6g —

\+L(g)^g ^0r a^ ^ in T. It is evident that the conditions imposed on L force

T to be countable; let g\, g2, ... be an enumeration of the elements of Y.

Then (I + D2L)~X is a diagonal operator with respect to the orthonormal basis

ôgx,ôg2, ... , and since 1+¿! )2 goes to zero as n goes to infinity, (1 + D2L)~X

is compact.
Conversely, suppose that L is a length function on Y such that (l2(Y), DL)

is an unbounded Fredholm module over C*(r). Since (l+DL)~x is compact,
Dl has a discrete set of eigenvalues, and hence the range of L is exactly the

collection of eigenvalues of Dl ■ Therefore the range of L is discrete and

unbounded. Furthermore, since each eigenspace of DL is finite dimensional,

L is finite-to-one.   D

Main results

Throughout this section, L will be a length function on a finitely generated

discrete group Y with the property that (l2(Y),DL) is an unbounded Fredholm

module over C*(Y). In addition, we stipulate the (mild) condition that the

identity element e is the only element of length zero.

Lemma. Let <f> be an element of Iso(C*(Y), l2(Y), Dl) ■ Then there is a unique
unitary U on l2(Y) such that U commutes with DL, USe = 6e, and <p(X) -

UXU* for all X in Q(Y).

Proof. Let V be any unitary on /2(T) that implements </> and commutes with

Dl ■ Since Dl is selfadjoint, V* also commutes with DL and hence each
spectral subspace of Dl is a reducing subspace for V. In particular, ker7>¿ =

CSe is reducing for V, and hence V6e = pôe for some complex number p

of modulus 1. The operator U = j¡V clearly satisfies the hypotheses of the

lemma. Furthermore, the formula <f>(Xg)Se = UXgU*Se = USg shows that U

is unique.   D

We shall refer to the unitary described in the lemma as the standard unitary
implementing <f>.

Theorem 1. Iso(C*(Y), l2(Y), DL), endowed with the topology ofpointwise con-

vergence, is a compact Lie group.

Proof. Since Y is finitely generated, we can choose a positive real number R

with the property that the set S = {g £ Y : L(g) < R} generates Y. Let "V be

the span of {ôg : g £ S} ; note that 'V is finite dimensional. Let ^(^) denote

the group of unitary operators on 'V, and define F : Iso(C*(Y), l2(Y), Dl) —►

flfC^) by taking F(<f>) to be the restriction to "V of the standard unitary U

implementing <j> £ Iso(C*(Y), l2(Y) ,DL). Since V is a reducing subspace for
U, F is well defined. Moreover, it is easy to check that F is a homomorphism
of groups.
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Suppose F((f>) = I, and let U be the standard unitary implementing <p.
Then for each g in S,

<p(Xg)ôe = USg = F(<p)ôg = ôg.

Since an element of C*(Y) is uniquely determined by its value on ôe, (p(Xg) =

Xg for all g in S, and since S generates Y, <f> must be the identity map on

C*(Y). Therefore F is an injection.

To show that F is continuous, let {<pa}aeA be a net in Iso(C*(Y), l2(Y), DL)

converging to <p £ Iso(C*(Y), l2(Y), DL), and let g be an element of S. Then

\\<pa(Xg)-<j>(Xg)\\ > \\<pa(Xg)ôe-<p(Xg)oe\\ = \\UJg-Uôg\\ = \\F{<pa)Sg-F(<p)Sg\\.

Since the set {Sg : g £ S} spans W, and since *V is finite dimensional, F((f>a)

converges to F(<f>) in the norm topology on %(fV).

Next, we show that F is an imbedding. Given </> in Iso(C*(Y), l2(Y), Dl)

and g in S, <p(Xg)ôe = Uôg is in "V, whence

<p(Xg) = "£(<i>(Xg)ôe, ôh )Xh = YtWWg. h )xh.
hes hes

Therefore, if {(f>a}aeA is a net in Iso(C*(Y), l2(Y), DL) and F(cpa) converges

to F((j>) for some <f> in Iso(C*(Y), l2(Y), Dl) , then {4>a(Xg)}aeA converges

to (p(Xg) for each g in S. Since the set {Xg : g £ S} generates C*(Y), and

since the maps <pa and <p are C*-homomorphisms, {<t>a(X)}a€A converges to
(p(X) for every X in Q(Y).

We claim that the image of F is closed in ^(2^). Suppose {F(<pa)}a€A

converges to V in %(fV). Then for all g in S, (pa(Xg) - ^(7r(0a)f5?, Sh )Xh

hes

converges to ^2(Vôg, ôn)Xn , and therefore the net  {<pa(Xg)}a€A  is Cauchy

hes
for all  g in Y.   All of the maps <pa are  C* -algebra homomorphisms, so

{(f>a(Y)}aeA is Cauchy for all Y in the complex group algebra CY, and since

Cr is dense in Q(Y),  {4>a(X)}a&A is Cauchy for all X in Q(Y).  Define
<p: C;(Y) —» Q(Y) by <p(X) = lim<pa(X), and define U: l2(Y) —* l2(Y) by

Í7(5g = (p(Xg)ôe . For each a in A , let £/a be the standard unitary implement-

ing 4>a. Then Uaôg — (f>a(Xg)ôe, and therefore UaSg converges to USg for

each g in Y. This implies that for each eigenspace fj of Dl, U restricts to
a unitary on Jj, and therefore U is a unitary on l2(Y) that commutes with

DL.

It remains to show that U implements <j>. Fix g in T, and let I = L(g).

Then ^f is a finite-dimensional reducing subspace for f7 and each Ua. By

restricting to "V\, we see that not only does Í/Qr5g converge to USg as we

noted above, but U*Sg converges to U*ôg as well. Thus Ua and U* con-

verge strongly to U and Í7*, respectively. This in turn implies that UaXh U*

converges strongly to UXhU* for each h in Y. But UaXhU* = 4>a(Xh), so

UX„U* = (f>(X„) for each A , as desired.
The homomorphism F is an imbedding of Iso(C*(Y), l2(Y), DL) onto

a closed subgroup of the compact Lie group Î/C^), and therefore

Iso(C*(Y), l2(Y), DL) is a compact Lie group itself.   D
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Remark/Example. The assumption that Y is finitely generated cannot be dis-

pensed with. Let T = ©¡jiiZ and let L be the length function

L(kx, k2, k3,...) = \ki\ + 2\k2\ + 3|fc3| + • • • •

Then (/2(T), DL) is an unbounded Fredholm module over C*(Y). For each

homomorphism x from r to the circle group T, define an automorphism <¡>x

of C*(Y) by (f>x(Xg) = x(g)^g ■ A- straightforward computation shows that

the unitary Ux on /2(T) given by Uxôn = x(g)°~h commutes with 7>¿ and
implements <px . Thus the group Hom(Y, T) can be viewed as a subgroup of

Iso(C*(Y), l2(Y), Dl) , and since Hom(Y, T) is clearly infinite-dimensional,

7so(C;(r), /2(T) ,DL) is not a Lie group.

Theorem 2. Let <j> be an isometry of (I2 (Y), Dl) and let X be a fixed point of

<f>. Then there exists a sequence {Xn} of fixed points in CY with the property

that {X„Se} converges to XSe in the norm topology on l2(Y).

Proof. Suppose 4>(X) = X, and let U be the standard unitary implementing

4>. Then UXU* = X, so UX = XU, and UXSe = XUSe = Xôe. On the
other hand, suppose that UXSe = X6e. Then the fact that U*ôe = ôe gives us

UXU*ôe = Xôe. Since UXU* and X are elements of Q(Y) that agree on

Se, <p(X) = UXU* = X. Therefore, X £ Q(Y) is a fixed point of <p if and
only if X8e £ l2(Y) is a fixed point of U.

Let rx,r2, ... be an enumeration of the eigenvalues of Dl , and let 7^ be

the orthogonal projection onto the rfc-eigenspace of Dl . Since U commutes

with Dl , U also commutes with Pk, whence PkXôe is a fixed point of U

for all k. Furthermore, since the range of 7^ is spanned by the finite set

{6g : L(g) = rk} , it is clear that PkX is a fixed point of cf> that is in CY. If

for each positive integer n we define Xn to be £¡t=o Pk% > it is easv t0 see tnat

{X„} is the desired sequence.

Corollary. Let (f> be an isometry of (l2(Y), DL) ■ If <f> has no nontrivial fixed

points in any of the eigenspaces of Dl , or more generally, has no nontrivial fixed

points in CT. then 4> has no nontrivial fixed points.
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