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CONDITION & AND BAIRE 1 GENERALIZED DERIVATIVES

UDAYAN B. DARJI, MICHAEL J. EVANS, AND RICHARD J. O'MALLEY

(Communicated by Andrew Bruckner)

Abstract. Ordered pairs (F, f) of real-valued functions on [0,1] which

satisfy the condition that every perfect set M contains a dense G¡ set K

such that F\M is dirferentiable to / on K are shown to play a key role

in several types of generalized differentiation. In particular, this condition is

utilized to prove the equivalence of selective differentiation and various forms

of path differentiation under the assumption that the derivatives involved are

of Baire class 1, thereby providing an affirmative answer, for Baire 1 selective

derivatives, to a question raised in [Trans. Amer. Math. Soc 283 (1984),

97-125].

Throughout this paper F and / will denote real-valued functions defined

on [0,1]. We shall say that the ordered pair of functions (F, /) satisfies

Condition 38 if every perfect set M contains a dense G¿ set K such that

F\M is differentiable to / on K. This condition plays a key role in situations

where F is selectively differentiable to / or path differentiable to /.

Selective differentiation was introduced by the third author in [3]. Unlike the

situation with many generalized derivatives, it was observed there that selective

derivatives need not belong to Baire class one. M. Laczkovich [2] showed that

they must belong to Baire class two, however. One consequence of the present

paper is that if / is a Baire 1 function, then a function F is selectively differ-

entiable to / if and only if / is a bilateral derivate function of F and (F, /)

satisfies Condition 38.
Path differentiation was introduced by Bruckner, Thomson, and the third

author in [1], where it was found that many properties of functions and their

path derivatives are based on various intersection conditions and it was asked
if there is an equivalence between selective derivatives and one type of path

derivatives. Utilizing Condition 33 , we shall answer this question affirmatively

in the situation where the derivative in question is in Baire 1. An unexpected

equivalence among various path derivatives is also established.
To clarify the technical terms utilized above, we need to review some ter-

minology from [3] and [1]. We will use the notation [a,b], or (a,b), to

denote the closed, or open, interval having endpoints a and b regardless of
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whether £z>èorZ>>£Z.A selection function is obtained by assigning to each

closed interval [a, b] in [0, 1] a point from (a, b) and labeling it P[a,b\- The

collection of p's thus obtained is called a selection S. We say that F is selec-
tively differentiable to f on [0,1] if there is a selection S such that for each
x£[0, I]

lim f^^'-f(x) = /(*).
y*        P[x,y)-X

Next, let x £ [0, 1]. A path leading to x is a set £^[0, 1] containing x
and having x as an accumulation point. A path system is a collection E = {JE?* :
x £ [0, 1]} such that each Ex is a path leading to x . If for each x £ (0, 1),
£* has x as a bilateral limit point, then E is called a bilateral path system.
We say that F is path differentiable to / if there is a path system E such that
for each x £ [0, 1]

hm ——-— = /(x).
>--*      y-x JK '

y£Ex       '

In [1] the following four types of intersection properties were investigated.

A system of paths E is said to satisfy the conditions listed below if there is
associated with E a positive function ô on [0,1] such that whenever 0 <

y - x < min{r5(x), S(y)}, then Ex and Ey intersect in the stated fashion:

• intersection condition (I.C): Ex n Ey n [x, y] ^ 0 ;
• internal intersection condition (I.I.C): Ex n Ey n (x, y) ¿ 0 ;
• external intersection condition, parameter m > 0 (E.I.C.[m ]):

Ex n Ey n (y, (m + l)y - mx) ¿ 0 and Ex n Ey n ((m + l)x - zny, x) ^ 0 ;

• one-sided external intersection condition, parameter m > 0
(one-sided E.I.C.[m]):

Ex n Ey n (y, (m + l)y - mx) ¿ 0 or Ex n Ey n ((zzz + 1 )x - my, x) ^ 0.

A statement such as " F is I.C.(bilaterally)-path differentiable to /" will indicate

that F is path differentiable to / with respect to a (bilateral) path system
which satisfies I.C. It is clear that if F is I.I.C.-path differentiable to /, then it
is I.C.-path differentiable to /. Likewise, if F is E.I.C.[m]-path differentiable
to /, then it is one-sided E.I.C.[m]-path differentiable to /. Theorem 3.4 in

[1] shows that if / is a bilateral derivate function of F and F is I.I.C.-path
differentiable to /, then F is selectively differentiable to /. We shall show
that the two notions are actually equivalent when / is Baire 1.

Lemma 1. Suppose that the function F : [0, 1] -» 1 is selectively differentiable

to f on [0,1] or path differentiable to f on [0,1] for some path system

satisfying any one of the four intersection properties. Furthermore, assume that

0 < e < 1 and M is a closed subset of [0, 1 ] such that F is Lipschitz on M
and \f(x) - f(y)\ < e for all x and y in M. Then there exists a constant c,
independent of e and M, and a set U ç M, relatively open in M, such that

for all distinct x and y in U

di
FW-FW

y - x
< ce.
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Proof To prove all five statements contained in this lemma, it clearly suffices to

prove the result only in the three situations where F is selectively differentiable

to /, I.C.-path differentiable to /, and one-sided E.I.C.[m]-path differentiable
to /, since each of the other two hypotheses implies one of these three. First

we consider the situation where F is selectively differentiable to f. Let 5

denote the given selection with P[X,y] denoting the selected point from [x, y].

For each n £ N let

ln = \x £ M :Vy satisfying 0 < |x - y\ <
1 F(p[x>y])-F(x)

Plx.y]
f(x)\<€

By the Baire Category Theorem there exists an zz e N and a relatively open set

U in M such that A„ is dense in U . We may assume that the diameter of U
is less than 1/zz.

We wish to establish ( 1 ) for all distinct x and y in U. First, suppose that

u, v £ U n An . Then

F(u)-F(v)

u - V
-f(v)

(2)

<

+

F(u)-F(p[u>v])

U - P[u,v]

F(p[u<v])-F(v

P[u,v]-V

-/(«)

-f(v)

+ \f(u)-f(v)\

<e • I +e • I +c • I

= 3e.

U - P[u,v]

U - V

U - P[u,v\

U-V

P[u,v] -V

U-V

Now let x, y £ U. Let L > 1 denote a constant which is greater than both

the bound on \f\ on M and the Lipschitz constant for F on M. Since A„

is dense in U, we may find u, v £ An n U for which both |x - v\ and \y - u\
are less than e|x - y\/L. Then, utilizing (2), we obtain

(3)
F(y) - F(x)

y
-f(x) < F(y)-F(u)

y-u

F(u)-F(v)

y-u

u-v

\-\f(x)-f(v)\

y-x

-f(v)

u-v

+
F(v)-F(x)

V - X

u-v\

y-x

y

y-x

+ \f(x)
\v - x\ + \y - u\

\y-x\

<L-- + L-- + 3e-3 + e-3 + L- —

= 16e,

completing the proof for the selective differentiation case.

Next, suppose that F is I.C.-path differentiable to / or one-sided E.I.C.[m]-

path differentiable to /, and for each x let Ex denote its path. This time for
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each zz 6 N we let

A,={ x£M:ô(x)> - &Vy£Ex,
n

0 < \x-y\ < -
n

F(y)-F(x)

y-x
-f(x) < e

}•

By the Baire Category Theorem there exists an zz e N and a relatively open set

U in M such that A„ is dense in U. We may assume that the diameter of U

is less than 1/zz.
Dealing first with the case where F is I.C.-path differentiable to /, we con-

sider any two points u < v in A„ n U, and let t £ Eu n Ev n [u, v]. If

t £ (u,v), then

F(u)-F(v)

u-v
f(v) <

F(u)-F(t)

+

(4)

u -1

F(t)-F(v)

-/(«:
u

t-v

+ \f(u)-f(v)\

<e•1+€•1+e-1

= 3e,

-f(v)

u - t

u-v

t-v

u-v

u-v

and if t — u or t = v , then clearly

F(u)-F(v)
(5) u-v

f(v) < e < 3e.

Noting that inequalities (4) and (5) are identical to (2), we may establish (1)

for arbitrary x and y in U by proceeding exactly as in the selective case via

inequality (3).
Finally, dealing with the case where F is one-sided E.I.C.[m]-path differ-

entiable to /, we let u < v be any two points in An n U, and let t £

Eu n Ev n ((m + l)u - mv, u) or / e Eu n Ev n (v, (m + l)v - mu)), de-

pending on which intersection is nonempty. Then we have

F(u)-F(v)

u-v
~f(v) < F(u)-F(t)

+

(6)

u -1

F(t)-F(v)

-f(u)
u -1

t-v

r\f(u)-f(v)\

-f(v)

u -1

u-v

t- v

u-v

\u-v\

<e-(m+l) + c -(m + l) + e -(m+l)

= (3m + 3)e.
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Using (6) in place of (2) we may now proceed as in the selective case to show

that for each distinct x and y in U

F(y)-F(x)
-f(x) < (9m + l6)e

y-x

completing the proof of the lemma.   D

Theorem I. If F has the Baire 1 function f as a selective derivative or path

derivative with respect to a path system satisfying any one of the four intersection
properties, then (F, f) satisfies Condition 38.

Proof. Let F be differentiable to the Baire 1 function / in any one of the

stated senses. Let M be a perfect subset of [0, 1]. Let W be a countable
basis for the relative topology on M. Using either Lemma 3 from [3] for the

selective case or Theorem 4.6 (see proof) from [1] for the remaining cases and

the fact that / is a Baire 1 function, for each W £ W and for each zz £ N we

can obtain a closed set Vnw ç W with nonempty interior in M such that F is

Lipschitzon Vnw and for all x and y in Vnw we have that |/(x)-/(y)| < ¿ .

Now, using Lemma 1 we may find nonempty sets U™ ç Vnw which are open

relative to M such that for all distinct x, y £ U„ ,

\F(x)-F(y)
x

f(x)
c

< -
zz

where c is the constant from the lemma. Let K = fÇ=x \Swcw ^n • Then, it is

easily seen that F\M is differentiable to / on the dense G¿ set K, completing
the proof of the theorem,   d

We remark that by Corollary 6.3 in [1] the Baire 1 assumption on / in the
E.I.C[m] case of the previous theorem is superfluous.

Lemma 2. Suppose that (F, f) satisfies Condition 38 and that f is a Baire 1

function. Then, it follows that for each zero-dimensional perfect set M ç [0, 1]

and for each e > 0 there exists a sequence {C,}°f ¡ of disjoint closed sets such
that:

(i)  IXiQ = Af.
(ii) For each i and each distinct x and y in C¡

F(x)-F(y)

x-y
-f(x) < e.

(iii) For each i, diam(C,) < e .

Proof. Let M be a zero-dimensional perfect set in [0, 1], and let e > 0. We

first establish the following:

CLAIM. Let P be a perfect subset of M. Then there exists a

set U which is open relative to P such that for all distinct x
and y in U

\F(x)-F(y)
x-y

-fix) < e.

Let P be a perfect subset of M. Since / is a Baire 1 function, / restricted

to P has a point of continuity. Hence there is a portion (relatively open set)
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Pi of P such that for all s, t £ Px we have \f(s) - f(t)\ < e/4. Furthermore,

since P is zero dimensional, we may take Pi to be closed relative to P as well

as open relative to P.
For each natural number n , let

'" = { se P
F(s) - F(t)

t
-As) < - for all t £ Px 0 < \s - t\ <

i)

Recalling that P|Pi is differentiable to / on a dense Gs subset of Pi and
applying the Baire Category Theorem, we conclude that one of these An's, say

Am, is categorically dense in an open set relative to Pi, and hence relative to

P. Let U be an open set relative to P, having diameter less than 1/zn which

is a subset of this open set.

Let x and y be distinct points in U. Choose s £ Amr\U so close to x

that \x -s\ <\x - y\/2. Then

F(x)-F(y)
-f(x) < F(x)-F(s)

+

x - s

F (s) - F (y)

s-y

fis)

-f(s)

x - s

x-y

s -
+ \f(s) - f(x)

e    1     e
< 7*0 + 7

4    2     4

3     e
2 + 4<e'

completing the proof of the claim.

To complete the proof of the lemma, we first apply the claim to P = M,

obtaining an open set U ; then we express M \ U as the disjoint union of a
perfect set P* and a union of a countable collection of singletons; we apply

the lemma to P* ; etc. This procedure can clearly be continued transfinitely.

However, the process must terminate at a countable ordinal, yielding a count-
able decomposition of M into closed sets which satisfy conditions (i) and (ii)

described in the lemma statement. Since M is zero dimensional, we may alter
these closed sets so that condition (iii) is satisfied as well.   □

Theorem 2. If f is a Baire 1 derívate function of F, and (F, f) satisfies
Condition 38, then

(1) F is I.C.-path differentiable to f. If in addition, f is a bilateral derívate
function of F, then

(2) F is I.I.C.-path differentiable to f, and, consequently, selectively differ-

entiable to f ;
(3) F is one-sided E.I.C[m]-path differentiable to f.

Proof. Essential to this proof is a tree technique similar to one developed by the

first two authors in [4]. Let J*" denote the collection of all finite sequences v

of natural numbers, and let J?* denote the collection of all infinite sequences

v of natural numbers. We are going to define a collection of closed sets

S = {G„ : v £ J"}.

We shall denote the length of a v £ ^f by \v\. We denote the kth term of

a v in either J*" or J2"* by v(k), and if v £ S has length at least zz or if

v £ J2"*, we let v\n denote the truncated sequence {^(1), z^(2), ... , v(n)}.

(For any v , v\o will denote the empty sequence.) If v £ J? and x — v\n for
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some zz, then we say that v is an extension of x. (Every t 6 y is considered

an extension of the empty sequence.) Finally, if \v\ - n and i is a natural
number, we let vi denote the sequence {^(1), z^(2), ... , u(n), j}. In order to
define our collection 2? we first let T be an F„ first category set such that F is

differentiable to / on the complement of T. Applying Lemma 2 we find that

for each natural number k there is a sequence {C*}g, of pairwise disjoint

closed sets such that :

• U£,c?«r.
• For each i and each distinct x and y in Cf

F(X)-m_m
x-y

<
1

2*'

.   diam(C*)<£.

Now for each zz £ N and each v of length zz we set

g»=nc"{ft):
k=l

and observe that

(1) Each Gu is a closed set of diameter less than ¿r •

(2) For each natural number zz, U^|=n Gv = T.

(3) If v ± x, and neither is an extension of the other, then Gv n Gx = 0,

(4) If t is an extension of v , then GT çGu .

(5) For each zz, if \v\ = zz, then for each distinct x and y in t7„

FM-F(y)_f(x)
l_

x-y - ' '  < 2"'

Note also that for each x £ T there is an unique vx£jr* such that

oo

{x}=n gVxU.
n=l

If x and y are in T and x/j, then vx ^ vy. For such x and y we let

ZZ[XJ,] denote the smallest zz £ N for which vx(n) / z^(zz). For any two points

x < y in [0, 1] we are going to designate one as the preferred point as follows:

if neither x nor y belong to T, then x is preferred; if exactly one of x and

y belongs to T, then the one that belongs to T is preferred; and if both x

and y belong to T, then x is preferred if ux(n[X<y]) < vy(n[X<y\), otherwise

y is preferred.
Also for each x e [0, 1] we select a sequence {^(x)} converging to x as

follows:

• If f(x) is a bilateral derívate of F at x, then let {sk(x)} be chosen so

that
o The sequence {sk(x) - x} alternates in sign.

o The sequence {|i(t(x) - x|} is strictly decreasing with limit 0.
0   iim,       fhW)-fW = fix)

■»'lfc^oo       sk{x)-x        -J {■*■)■
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• If /(x) is only a one-sided derívate of P at x, then let {sk(x)} be

chosen so that
o The sequence {sk(x) - x} strictly monotonically converges to 0.

°   lim^oo F{t¿)ZFx{x) = Ax).

We now define the required path systems. Our method is based on two weak-

ened forms of a selection function. Utilizing one type of "selection" function,

we will first define paths that are I.C. or I.I.C. depending on whether / is a

derívate or bilateral derívate of F. Then for a fixed m > 0 we will define

a path system that satisfies E.I.C.[m] in a similar fashion using a somewhat

different type of "selection" function.

Turning to the I.C. and I.I.C. cases first, to each pair of points 0 < x <

y < 1 we assign a point q[X,y] £ [x, y] in the following manner: For x < y

let u be the preferred point of x and y, and let v be the other one. If

{sk(u)} n (x, y) t¿ 0, then choose q[X<y] to be the first element of the sequence

{sk(u)} in (x,y) satisfying both

(a)

(b)

Q[x,y]-u\ < \qlx,y]-v and

Ix.yY
<\x-y\

and if {sk(u)} n (x, y) = 0, choose q[X,y] = u. Now set

EÎ =    U   tilx.t]},     Ex =    [J   {qlt,x]},
t€(x,i] re[0,x)

and    Ex = {x} U E+U E'x

It follows that Ex is a path leading to x , and since for each 0 < x < y < 1 we

have q[x,y] £ Ex n Ey n [x, y], the resulting path system E = {Ex : x £ [0, 1]}

satisfies I.C. Furthermore, if / is a bilateral derívate of F, then E satisfies

I.I.C.
Suppose that x and y are in T and zz[XJ,j > 1 .  Let u be the preferred

point of x and y , and v be the other point. Then, we have that

F(qlx>y])-F(v)

(7)

a[x,y]
f(v) < F(q[x,y])-F(u)

+

Q[x,y] - U

F(u)-F(v)

u-v

+ \f(u)-f(v)\

< \x-y\ • 1 +

-f(u

f(v)

Q[x,y] - U

Q[x,y]-V

U-V

Q[x,y]-V

Q[x,y] - U

1
2"i"-yi~x

Q[x,y]-V

2 +
2nl*,y)-

< 2ni*- yy

Next, we define an E.I.C.[m]-path system D. For each x we set r[XX] =
x. For 0 < x < y < 1 the point selected corresponding to [x, y] will fall

outside the interval, but close enough to it so that one-sided E.I.C.[m] will hold.

Let x < y be any two points in [0, 1]. We assign a point r^x,yX in either

(y, (m + l)y - znx) n (y, y + ïzjL)  or ((zrz + l)x - zrzy, x) n (x - ^, x)

as follows: Let u be the preferred point of x and y, and v be the other
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point. If u = x, then let r[x%yX be the first element of the sequence {sk(u)} in

((m + l)x - my, x) n (x - ^ , x) satisfying

(8)
nr[x,y])-F(u) _ f{u]

r[x,y] - U
<\x-y\.

If u = y, then let r[x r]  be the first element of the sequence  {sk(u)} in

(y, (m + l)y - mx) n (y, y + ^) satisfying (8). Then set

££=  U {^,*]}>   *>*" =  U to
i€(x,l] i€[0,x)

t]},      and    Dx = {x} U D+ U LV

It follows that Z>x is a path leading to x, and since for each 0 < x < y < 1

we have r[X,y] £ Dx n Dy n [(y, (zzz + l)y - mx) U ((m + l)x - my, x), the

resulting path system D = {Dx : x £ [0, 1]} satisfies E.I.C.fm].

Note that inequality (7) is again satisfied when q\x,y\ is replaced by r[XtyX.

We now must verify that with respect to these path systems D and E, F

is path differentiable to /. We only do this for the path system E because a
very similar argument works for path system D. Let x 6 [0, 1]. If x £ T,

then P'(x) = f(x), and so we only need concern ourselves with the situation

where x £ T. We must show that

..     F(y)-F(x)
hm ——-— = f(x).
y-¿       y-x v  '

yeEx       *

To this end, let {yf\ be a sequence of points from Ex \ {x} which converges

to x. We shall assume that each y¡ > x for specificity. (If a subsequence
satisfies y¡ < x, it can be treated by an analogous argument.) For each j there

is a Wj > x such that y¡ = q[X,Wj] ■ Furthermore, note that because q[X,Wj] was

selected as the first element of the appropriate sequence to satisfy conditions

(a) and (b), it will follow that {Wj} must also converge to x .

Let e > 0 and choose a natural number A^ > 1 such that 5/2N_1 < e . Let

G denote the union of all the GT where

(i)  |t|<AT,
(ii)  x is an extension of z>jr||T|_i,

(iii)   T(|T|)<MW)-

Let d denote the positive distance from x to G, and let A be the minimum

of d and 5/2JV_l . Choose / e N so that for all ; > J, 0<wj-x <A. Let
j > J. If Wj $. T, then by (b) we have

(9)
F(yj)-F(x)

yj-x
Ax) < \x-Wj\ < e.

If Wj £ T and n[X,w\ < N, then since w¡ £ G, we must have ux(n[Xtwj]) <

Vw¡(n\x,Wj\) ; i.e., x is the preferred endpoint of [x, Wj] and thus by (b) we

again obtain inequality (9). Finally, if Wj £ T and n[X,w¡] > N, there are two

possibilities. If x is the preferred endpoint of [x, Wj], then we again obtain
inequality (9) from (b). If Wj is the preferred endpoint of [x, Wj], then from



1736 U. B. DARJI, M. J. EVANS, AND R. J. O'MALLEY

(7) we have

F(yj)-F(x)

yj-x

completing the proof of the theorem.   D

As immediate consequences of Theorems 1 and 2 we obtain the following

corollaries:

Corollary 1. Let f be a Baire 1 derívate function of F. Then, F is I.C.-path
differentiable to f if and only if (F, f) satisfies Condition 38 .

Corollary 2. Let f be a Baire 1 function which is a bilateral derívate of F.

Then, the following are equivalent:

(1) (F, f) satisfies Condition 38.
(2) F is selectively differentiable to f.
(3) F is I.I.C.-path differentiable to f.
(A) F is one-sided E.I.C.[m]-path differentiable to f.
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