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SKEW POLYNOMIAL EXTENSIONS
OF COMMUTATIVE NOETHERIAN JACOBSON RINGS

K. r. goodearl and e. s. letzter

(Communicated by Lance W. Small)

Abstract. The Jacobson condition (i.e., that all prime ideals are semiprimi-

tive) is proved to pass from a commutative noetherian ring R to a skew poly-

nomial ring R[y ; t , a], assuming only that x is an automorphism.

1. Introduction

This note is concerned with the prime ideal structure of a skew polynomial

ring S = R[y ; x, S] over a noetherian ring P with respect to an automorphism

t and a (left) t-derivation S (cf. [7]). An unanswered question in this setting
is whether S must satisfy the Jacobson condition (i.e., every prime ideal is an
intersection of primitive ideals) when R satisfies the same property. Some pos-
itive answers are known even for non-noetherian coefficient rings: Waiters [15]
proved that K[y] is Jacobson for any Jacobson ring K, and Irving [9] showed
that an iterated skew polynomial extension T of a commutative Jacobson ring
K is Jacobson if K is central in T (see also [12]). On the other hand, examples
have been constructed of non-noetherian commutative Jacobson rings K with
skew polynomial extensions K[y ; r, S] that are not Jacobson; see Pearson and
Stephenson [14] for an example in which S = 0, and see Bergen, Montgomery,

and Passman [1] or Ferrero and Kishimoto [3] for examples in which x = 1.

Within the noetherian context, affirmative answers to the problem were given
by Goldie and Michler [4] when S is trivial, and by Jordan [10] when t is the
identity.

The aim of this note is to provide an affirmative answer to the above question
when R is commutative noetherian but no restrictions are placed upon t or
S. Such a result has remained unavailable despite the thorough analyses of the
commutative case by Irving [8] and the first author [5]. Our methods rely in part
on the techniques introduced in [6] as well as on the results in [5]. Moreover,
it is not assumed that R be filtered, graded, or affine.

We impose the blanket hypotheses throughout that R is a commutative
noetherian ring, that S = R[y ; t , ô], and that t is an automorphism of R,
However, commutativity of R is not needed for (2.2) and (3.1).
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2. Induced vs. noninduced prime ideals

Throughout this section we let P denote an arbitrary prime ideal of S. If A

is a ring and / is an ideal of A , then N(I) denotes the intersection of all the
prime ideals containing / and /(/) the intersection of all the right primitive
ideals containing /. The reader is referred to [7, 13] for further explanations

of undefined terms.

2.1. By [6, 5.3, 5.5], we may fix a prime ideal ß of R, minimal over PnP,
that satisfies the following property: If A denotes the Goldie quotient ring of

R/Q, then P is the right annihilator in S of a nonzero A- S-bimodule factor

M of A <8>r S such that MS/p is torsionfree. Next, set U = S/QS, and let e

denote the coset l + QS. Observe that we may identify RUs with (R/Q)®rS

by an isomorphism that sends e to 1 ® 1, and under this identification we may

view (r/q)U as a free left (P/0-module with basis

{1® 1, l®v, l®y2,...}.

Also, observe that as a left P-module, A ®r S is isomorphic to an Ore local-

ization of rU .
It follows from the above choice of ß that ann U$ Q P, since ann Us =

ann(A <8>R S)$ . Our analysis divides into the two cases determined by whether

or not P = ann Us, and we begin with an incomparabilty result.

2.2. Lemma. (Here R need not be commutative.) Suppose that J is an ideal

of S properly containing P. If P ^ ann Us, then J n P g Q.

Proof. By [6, 4.6], the set & of regular elements of R/(P n R) forms an Ore

set (of regular elements of S/P ) in both R/(P n P) and S/P, and the ring

E = (R/(P n R))W~X is artinian. Letting F = (S/P)^~x, we see that the
canonical embedding of P/(PnP) into S/P extends uniquely to an embedding

of E into F. Now choose an ideal I of S that contains P and is maximal

among those ideals of S whose intersection with R lies within Q. Standard

arguments reveal that / is a prime ideal of S disjoint from fê. Consequently,

if / strictly contains P, then / extends to a proper nonzero ideal of F (e.g.,

[7, 9.22]). Next, it follows from [6, 5.7, 5.8] that Fe is finitely generated when
P t¿ ann Us ■ However, if F has finite length as a right P-module, then F is

a simple artinian ring. Therefore, I — P and the lemma follows.   G

2.3. Lemma.  (P + QS)nR = Q.

Proof. We may assume without loss of generality that P f) R fí Q, and it

therefore follows from the minimality of ß that PnP is not prime. Moreover,
it suffices to prove that (P + QS) nRçQ. Next, by [5, 3.1], either P n P is
semiprime or R/(P n R) has a unique associated prime. We first consider the
case where R/(PnP) is semiprime, and we let Q, Q2, ... , Qn be the distinct

prime ideals of P minimal over PnP. Note that n > 2 and Q„Q„-X ■ ■ • Q2Q ç
PnP. Hence,

QnQn-x ■ ■■ Qi [(P + QS)nR]çpnRç q.

Since QnQn-\ • • • 02 £ ß, it follows that (P + QS) n P ç Q in this case.
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Now assume that R/(P n P) has a unique associated prime. Consequently,

ß is the unique prime ideal of P minimal over PnP and &r(Q) ç ^r(PC\R) .
Therefore, ^r(Q) ç Ws(P) by [6, 4.6]. Hence, if there exists an element c £

(P + QS) n(R\Q), then c £ WS(P). Next observe that there exists a positive

integer n such that Q" ç P n P while Qn~x £ PnP. However, it now

follows that Q"-Xc ç Qn~\P + QS) ç P, in contradiction to the regularity of

c modulo P. Therefore, (P + QS) n P ç Q and the lemma follows.   D

The proof of the following proposition is adapted from [4, 10].

2.4.   Proposition. If P ^ ann Us and Q is semiprimitive, then P is semiprim-

itive.

Proof. For t -0, I, ...  set

Kt = {a £ R | e.(ay' + at-Xy'~x +-ha0) £ UP for some a0, ... , at-X £ R}

= {a £ R | ay' + at-Xy'~x H-ha0 £ P + QS for some a0, ... , at-X £ R}.

Then let K = K„ , where n is the minimum value for t such that

0 í e.(aty' + at-Xy'~x +--- + a0)£UP

for some ao, ... , at £ R. (The existence of n follows from the assumption

that P / ann Us.) Note, since t is an automorphism, that K is an ideal

of P containing Q, and observe, for a £ K, that a g" Q if and only if

0 ^ e\(ay" + an-Xy"~x + ■■■ + a0) £ UP for some ao, ... , a«_i G P. In

particular, K properly contains Q. Moreover, since (P + QS) n P ç Q by

(2.3), it follows that n > 1.
Now let A/ be a maximal ideal of P that contains ß. We claim that either

J(P) nRÇM or KCM. To prove this claim, assume that J(P) n P g Af.
Choose 7 G J(P)f)R such that j f M. There then exist m £ M and ô G P
such that  1 = m + jb.   Since ;'ö G /(P), there exists a polynomial / =
cy* + C(-Xye~x H-+ Co G S, with c, en > • • • > O-i G P and c ^ 0, such that

(1 - y'è)/ = m/ = 1 (mod P ). Hence, e.mf = e (mod UP ). Now choose

a £ K\Q. There then exists a polynomial /? = ay" + a„_iy"_1 H-h ao £ S,

with ao, ... , an-X £ R, for which 0 / e.p £ UP. Assume for the moment

that £ > n , and observe that

af-pr-"(c)ye-n

has degree less than £ . It now follows from a straightforward induction that

e.akf s e.r (mod UP ) for some nonnegative integer k and some polynomial

r £ S with degree d < n . Hence, we have

e.akmf = m.e.akf = m.e.r - e.mr   (mod UP),

and since akmf = ak (mod P ), we see that e.ak = e.mr (mod UP ). Con-

sequently, e.(ak - mr) £ UP. However, ak - mr has degree strictly less than

n . Therefore, it follows from the choice of n that e.(ak - mr) — 0. Hence,

ak - mro £ Q, where ro is the constant term of r. But this last statement

implies that ak £ M, because ß ç M. Thus a £ M, and it therefore follows

from the choice of a that KCM. This verifies the claim. Furthermore, it
follows from the claim that J(P) n K ç M. Because M was an arbitrary

maximal ideal of P containing Q, we now see that J(P) n K ç J(Q) = Q.
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But this inclusion means that J(P) n R ç Q, since K g Q. Thus by (2.2),
J(P) = P, and the lemma is proved.   D

2.5. Lemma. Assume that P = anni/5. Then PnP is (t , S)-prime, and

P = (P n R)S = S(P n P). Consequently, if x and ô also denote their induced
actions on R/(P n P), and y  also denotes its image in S/P, then S/P —

(R/(Pr\R))[y;x,ô].

Proof. Set / = PnP. It follows from [6, 5.9ii] that there exists an n £ N such
that xn(Q) = Q and such that {Q, x(Q), ... , r"_1(ß)} is the set of prime

ideals of P minimal over PnP. In particular, N(I) is r-stable. Now suppose

that I = Q. Then / is r-stable and therefore (t, t5)-stable (e.g., [6, 2.1v]).
Hence, IS = SI, and P = ann(S/IS)s = IS. Further, it is a triviality that
/ is (t, ¿)-prime. Next, assume that I ^ Q. Consequently, / is not a prime
ideal, and so / is a (t, ¿)-prime ideal by [5, 3.1]. It therefore follows from

[5, 3.3] that Po = IS = SI is a prime ideal of S. Moreover, Po ç P and
P0nP = PnP = /.

Because ß is minimal over /, and P is commutative, it follows that Q is

an annihilator prime of (R/I)r . In particular, Q is an annihilator prime of

(S/Po)r . Hence, by [6, 5.5], Po 2 ann Us = P ■ The lemma follows.   D

2.6. Lemma. Suppose that Q is a maximal ideal of R and that S/P is ar-

tinian. Then S/P has finite length as a right R-module.

Proof. First, it follows from [6, 4.4] that every prime ideal of P minimal over

P n P is maximal, and so R/(P n P) is artinian. Therefore, if P ^ ann Us ,

the desired conclusion follows from [6, 5.9i]. Now assume that P = ann Us.

Therefore, by (2.5), we may assume without loss of generality that P = 0. But

then y is a regular noninvertible element of S, a contradiction to the fact that
S is artinian (e.g., [13, 3.1.1]).   D

3. Induced bimodules

Chapter 5 of [6] contains an extensive analysis of the prime ideals of S that
occur as annihilators of factors of bimodules of the form A ®R S where A is

the Goldie quotient ring of a prime factor ring of P. We shall need one element
of the corresponding analysis of bimodule ¿«¿factors of A ®r S, as follows. In

the case of a bimodule factor, this lemma is a consequence of [6, 5.4, 5.5].

3.1. Lemma. (Here R need not be commutative.) Let P be a prime ideal of

S and Q a prime ideal of R, and let A denote the Goldie quotient ring of

R/Q. Further assume that P is the right annihilator in S of an A- S-bimodule
subfactor K of A®RS that is torsionfree as a right (S/P)-module. Then every

prime ideal in R minimal over PnP belongs to the x-orbit of Q.

Proof. Choose a nonzero element £ £ K and let L = A.£.R. It follows from

[6, 4.6] that R/(P n P) has an artinian quotient ring and that every regular

element of R/(P n P) is regular in S/P. Hence, L is torsionfree as a right

(P/(P n P))-module, and by Small's Theorem (e.g., [7, 10.10]) and [7, 6.3], it
follows that every annihilator prime of LR is minimal over PnP. We leave

to the reader the verification that L has finite length as a left yi-module. Now

choose a simple A- P-sub-bimodule M of L. The right annihilator in P of M
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is a prime ideal, say Q', and we have just seen that Q' must be minimal over
PnP. However, it follows from the proof in [6, 4.4] that M is isomorphic to

Ax> as an A- P-bimodule, for some positive integer j. (As a left ,4-module,

Ax' has the same structure as A , but the right P-module structure is defined by
the operation a * r = axj(r), for every r £ R and a £ A.) It therefore follows

that Q' m x~j(Q), and the desired conclusion now follows from [6, 4.4].   D

3.2. Proposition. Let M be a maximal ideal of R. Then the right annihilator

in S of S/MS is prime.

Proof. Set V = S/MS = (R/M) <S>r S, and let P denote a maximal annihilator
prime of Vs . It follows from [6, 5.6iv] that V is uniform as an P-5-bimodule,
and it is therefore easy to verify that every annihilator prime of Vs is contained
in P. If P = ann Vs, then there is nothing to prove, and so we suppose

otherwise. Next, let 0 = F0 c Vx c • • • C Vn - V be an affiliated series for V
(see, e.g., [7, p. 33]), where n > 1, and set P, = ann(F,/F,_i)s for I < i < n.
(Note that P\ = P.) If i > 1, it follows from [6, 5.6iii] that F,/F,_i has
finite length as a left P-module. It therefore can be deduced from Lenagan's

Theorem (e.g., [7, 7.10]) that (F,-/F|-_i)s has finite length for z > 1. However,
it now follows from [7, 7.2] that S/P¡ is an artinian ring. In particular, each
F,/F(_i is torsionfree as a right (5/P,)-module, and in view of (3.1), the prime
ideals of R minimal over PnP are therefore maximal ideals. We may now
conclude from (2.6) that each S/P¡ has finite length as a right P-module for
i> 1.

We next prove that S/P = S/Px is artinian and has finite length as a right P-
module. If P2 is an annihilator prime of Vs, then P2ç P and there is nothing
to prove. So we may assume otherwise. It then follows from [11, 1.2] that there
is a series of links (e.g., [7, p. 178]) from P2 to some annihilator prime P' of
Vs. However, it now follows from [7, 7.2, 7.10] that P' is coartinian. Hence
P = P' is coartinian, because P' ç P. Next, it follows from (3.1) that every

prime ideal of P minimal over PnP is a maximal ideal. Thus S/P has finite
length as a right P-module by (2.6).

To conclude, it now follows that V¡/V¡-X has finite length as a right P-module

for all 1 < i < n. But we are now forced to conclude that Vr has finite length,

an absurdity. The lemma follows.   D

4. Ascendancy of the Jacobson condition

4.1. Lemma. Assume that R is artinian and (x, ô)-prime. Then S is a Ja-

cobson ring.

Proof. First, it follows from [5, 2.3] and [4, 5*] that P is (t, <?)-simple. Also,
R is a Jacobson ring, and so by [10, 3.5] we may assume that x is not the
identity. Now assume that P is T-prime. Then it follows from [5, 3.7] that S
is inner, and so the desired conclusion follows from [4, 1.11*] and, for example,

[5, 1.5c]. It remains to consider the case that P is not t-prime. Therefore, by

[5, 2.6], P is ¿-prime and has a unique maximal ideal M. From [5, 2.6, 4.6]
it follows that S contains a subring A = (R/M)[y' ; Ô'], where y' £ S and
S' is a derivation of R/M, and it follows from [10, 3.5] that A is a Jacobson
ring. It is proved in [5, 4.6] that 5 is finitely generated as a left .4-module.
Therefore, S is a Jacobson ring by [2, Theorem 1].   D



1678 K. R. GOODEARL AND E. S. LETZTER

Recall that a prime ideal P of S is said to lie over a prime ideal Q of P
when Q is minimal over PnP.

4.2. Lemma. Assume that there exists a maximal ideal M of R such that the

module V = (S/MS)S is faithful. Then S is semiprimitive.

Proof. First suppose that M is minimal. By (3.2), S is prime, and so by [6,
5.12], the minimal prime ideals of P are all contained within a single T-orbit.

Therefore, all minimal prime ideals of P are maximal, and so P is artinian.

Moreover, because S is prime, and because nonzero (t , a)-ideals of P induce

to nonzero ideals of S, it follows that P is (t, <5)-prime. Hence, by (4.1), S

is semiprimitive. Thus we may assume that M is not minimal.

Next, suppose that x(M) = M. Since Vs is faithful, MS cannot be an ideal

of S, and so M is not ¿-stable. Thus no ideal of S contracts to M ; see [6,

2.1v]. Now suppose that N is a prime ideal of S lying over M. From the
preceding observation it follows that NnR ^ M, and so I = NOR must be

a (t, <5)-prime ideal of P by [5, 3.1]. Moreover, our assumption that M not

be a minimal prime ideal of P guarantees that / ^ 0. Hence IS is a nonzero

ideal of S contained in MS, a contradiction to the faithfulness of Vs. Thus,
no prime ideal of S lies over M. It therefore follows from [6, 5.7] that there

exist no proper simple P-S-bimodule factors of V, and so rVs is a simple
bimodule. It is now straightforward to prove as follows that S is right primitive:

Let K be a maximal right S-submodule of V, and let J = ann(V/K)s . Then
V J is an P- S-sub-bimodule of V that is not equal to V. Hence V J = 0,
and so J = 0 by the faithfulness of Vs. Therefore V/K is a faithful simple
right 5-module.

Finally, assume that x(M) ^ M. Yet L = f}iez x'(M), and note that L is a
semiprime, r-prime ideal. By [5, 3.1], for each z G Z there exists a prime ideal
of 5 contracting to x'(M). Hence, there exists an ideal of S contracting to L,
and it follows, for example, from [6, 2.1v] that L is (x, <5)-stable. Therefore,

LS = SL is an ideal of S contained within MS, and so LS = 0 because Vs
is faithful. Consequently, L = 0, and hence P is a semiprime, r-prime ring.

To conclude, let J = J(S), and suppose that 7^0. Note that the set of

leading coefficients of elements of J, together with 0, namely the set

{a £ R | ay' + at-Xy'~x H-h a0 £ J for some a0, ... , at~x G P},

is a nonzero r-ideal of P . This ideal must contain a regular element since P is

T-prime, and therefore there exists a polynomial f £ J with positive degree and

regular leading coefficient. Since l+f is a unit, there exists another polynomial

g such that (1 + f)g — 1. But the degree of (1 + f)g is certainly greater than
zero, by the regularity of the leading coefficient of f, and we thus obtain a
contradiction. Hence, J — 0, and the lemma follows.   D

4.3. Theorem. Assume that R is a commutative noetherian Jacobson ring.

Then the skew polynomial ring S = R[y ; x, S] is a Jacobson ring.

Proof. Suppose that the theorem is false, and let P denote a maximally chosen

nonsemiprimitive prime ideal of S. As in (2.1), we may select a prime ideal ß

of P such that Q is minimal over PnP and such that P is the annihilator

in S of an A- S-bimodule factor of A <g>Ä S, where A is the field of fractions

for R/Q. If P ^ ann(5/ßS)5, then P is semiprimitive, by (2.4). Therefore,
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by (2.5), we may assume without loss of generality that P = 0. Furthermore,

ß is equal to the intersection of those maximal ideals of P that contain it. In

particular,

QS = f){ MS \ M £ maxR and M D Q }.

Therefore,

0 = ann(S/QS)s = f] { ¡mn(S/MS)s | M £ maxP and M D Q }.

Next, it follows from the above equalities and (3.2) that if there exists no max-

imal ideal M in S such that M D Q and (S/MS)s is faithful, then some
intersection of nonzero prime ideals in S is equal to zero, a contradiction to

the fact that each nonzero prime ideal of S is semiprimitive. Thus, there ex-
ists a maximal ideal M in P such that (S/MS)S is faithful. Therefore, it

follows from (4.2) that S is semiprimitive, a contradiction to our hypothesis.

The theorem follows.   D

4.4. A question of Small. A possible generalization of the preceding theo-

rem would include the replacement of the commutativity hypothesis with the

assumption that P satisfy a polynomial identity. L. W. Small has informed

us of his unpublished proof that if P is an affine PI algebra over a (t, in-
constant field k, then S[u, v] = R[y ; x, S][u][v] is generically flat over k[u],

and consequently, S is a Jacobson ring (cf. [13, 9.3.13]). Small further raises
the following question: If T is a filtered noetherian ring such that grP is Ja-
cobson, must T also be Jacobson? (We thank L. W. Small for the remarks

discussed here.)

Note added in proof (December 1994)

A. D. Bell has communicated two counterexamples to Small's question; how-

ever, in one example the filtration is a Z-filtration, while in the other, gr T is

not noetherian. The following modification of Small's question remains open:
If T is a nonnegatively filtered noetherian ring such that gr T is Jacobson and

noetherian, must T be noetherian?
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