
proceedings of the
american mathematical society
Volume 123, Number 6, June 1995

FREE INVOLUTIONS ON E4m LATTICES

WOJTEK JASTRZEBOWSKI

(Communicated by Ronald Stern)

Abstract. We determine all the conjugacy classes of traceless involutions on

the E4m lattices. In particular, we show that for every m > 2 there exist

precisely two nonconjugate involutions which induce free Z[Z2]-module struc-

tures. By inspecting the parity of the E4m form twisted by any such involution,

we deduce that a closed, simply connected, topological 4-manifold with inter-

section form Et,m supports a locally linear involution if and only if m is odd

and the Kirby-Siebenmann invariant of the manifold is trivial.

1.   E4m  LATTICES

Recall that a lattice in R" is a subgroup LcR" which is additively generated

by some basis bx, ... , b„ of R" . The volume of the quotient torus R"/L can

be defined by
vol(R"/L) = |det(A,...,ôB)|.

A lattice is called unimodular if vol(R"/L) = 1. If L0 c L is a sublattice of
L of (necessarily finite) index |L/Ln|, then

vol(R"/L0) = vol(R7L)|L/L0|.

This provides a convenient way of testing whether a set of vectors Vx, ... , v„ e

L is a basis, the sufficient and necessary condition being

|det(¿>i,... ,b„)\ = |det(«i,..., t>„)|.

Let ex, ... , 64m denote an orthonormal basis in R4m with respect to the usual

inner product. The vectors e¡+ej and \(ex-\-l-<?4m) span a lattice E4m c R4m

which is a positive definite inner product space over Z with respect to the

restriction of the standard inner product; cf. Milnor-Husemoller [10, II.6.1].
More explicitly,

E,m = tfi*i + • • • + ^me,m e R4m : % € Z, 2{, s ■ • • as 2&m (mod 2),

£i+••• + &•* = 0 (mod 2)}.

2.   Z-TORSION-FREE MODULES OVER Z[Z2]

Let L be a free Z-module, and let T: L —> L denote an involution on

L. Put A = Z[T]. Thus L becomes a A-module. By Reiner's classification
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of Z-torsion-free A-modules [1, 74.3], L can be written as the direct sum

L = mZ+ © nZ- © rA, where Z± are copies of Z on which T acts by ±id,

respectively. Then the triple (m, n, r) determines the isomorphism type of
L. Note that Reiner's classification is quite elementary in the case of Z[Z2]-

modules.

3. TRACELESS INVOLUTIONS ON E4m  LATTICES

In this section we discuss involutions on the E4m lattices (m > 2) for which

E4m = mZ+ © mZ- © rA.

Let D4m denote the lattice generated by the vectors ±e¡ ± e¡ , i ± j. By
Serre [12, p. 40], the isometry group of D4m consists of permutations and sign

changes of the vectors e¡. Let T be an involution on E4m , and suppose m > 2.

Then T preserves D4m , since ±e¡ ± e, are precisely the minimal vectors in

E4m of norm 2. It follows that the isometry group of E4m consists precisely of

permutations and sign changes of an even number of the vectors e¡.
Therefore we may assume that with respect to our orthornormal basis {e¡}

of R4m , the matrix of T is of the form

Bx

B2n

where each Jordan block 5, is one of

1    0
0    1

or
0 1
1 0

We would ultimately like to know if E4m supports a free A-module structure.
This leads us to the analysis of traceless involutions, i.e. those for which the

number of [' ^-blocks is equal to the number of ["' ]-blocks. For every

such involution T we determine the corresponding A-module structure for

E4m , by providing an explicit T-invariant basis.

Note that we do not need to consider the [ _, 0 ]-blocks, except when all the

remaining blocks are [. n ]. Indeed, since

0 1
1 0

0 -1
1 0

0
-1 0

0     1
-1    0

the [ ]-blocks can be removed by conjugation.
■i o

Therefore we only need to consider the following involutions:
i o i o

(i) ^=p[¿;]©pr0 _.]©2(m

(2) Ty = [°

■P)[?¡]. l</><™,

~0l]®(2m-l)[°l10],

■ o i
(3) Tz = 2m[yQ].

In order to determine the Z[Z2]-module structure induced on the E4m lattice

we explicitly construct equivariant bases in each case as follows.1

'To choose a basis of an «-dimensional vector space over R , it suffices to pick randomly n vec-

tors from the space. We extended this "algorithm" to our situation: vectors v\, ... , v4m are chosen
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Let 1 <p < m . We define a basis xx, ... , x4m by

1943

Xi = <

( lv4"V2 ¿^1    tJ '

î(Sl   ej ~¿-,2p+lej+ L,4p+lej)>

e¡-i -<?■,

<?2/> + -?2/H-l ,

<?, + ei+2,

ex +e4p+i,

I  t?l + <?4p+2 ,

= 1,

= 2,

= 3, ... , 4p - 1,

= 4p,

p < m, i = 4p + 1, .

p < m, i = 4m - 1,

p < m, i = Am.

Let X4P>4m denote the matrix of coefficients of the vectors Xi,

respect to the orthonormal basis.

4m - 2,

, x4m with

Lemma 3.1. For every m and p, such that 1 < p < m, det X4p4m = -1. The

basis {.x,}4™  is Tx-invariant and

E4m^2(p- l)Z+©2(p- l)Z_©2(m-p+l)Z[r».].   D

We define yx,... , y4m by

y. = <

2 Li    tJ '

■>4w

Ï-1,

\YAxmej-ex-e2,    i = 2,

-ex + <?3,

e,-i + <?,, 4 < / < 4m.

Let T^ denote the matrix of coefficients of the vectors y>, ... , y4m with

respect to the orthonormal basis.

Lemma 3.2. For every m > 1, det Y4m = 1. The basis {y,}4™. is Tyinvariant

and E4m^2mZ\Ty\.   G

Finally, we define the basis z- , ... , z4m by

2 2^1    ej >      «

<?1 + <?2 ,

<?2,

<?3 - t?4 ,

^ <?/_2 + e¡,

= 1,

= 2,

= 3,

-4,

í = 5, ... , 4m.

Let Z4m denote the matrix of coefficients of the vectors Z\

respect to the orthonormal basis.

with

Lemma 3.3. For every m > 1, deXZ4m = -1. The basis {z,}4™, is Tz-invariant

and E4m^2Z+®2Z-®2(m-l)Z[Tz].   D

We summarize our results in the following theorem.

randomly from a set of minimal vectors until two conditions are satisfied: det(t>i, ... , v4m) = ± 1

and {v\ , ... , v4m} = {Tv¡,..,, Tv4m} . We used a set-theoretic, interpreted extension of the C

programming language [8] to implement this algorithm.
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Theorem 3.4. For every m > 2, there exist precisely two nonconjugate involu-

tions on the E4m lattice which induce free Z[Z2]-module structures, namely Tx

(when p = 1) and Ty. For these involutions, the twisted form, given by

(x,y)~(x, Ty),

is even if and only if T = Ty and m is odd.

4. Application

In this section we use Theorem 3.4 to prove a nonexistence result for invo-

lutions on the E4m manifolds.

Let M4 be an oriented, closed, simply connected, topological 4-manifold.
Since M is simply connected, L = H2(M; Z) is torsion-free. The intersection

form Xm'. Lx L —> Z of M is defined by

XM(x,y) = (xöy)[M].

The form Xm is symmetric and bilinear. Since M is closed, Xm is unimodular,

by Poincaré duality. For example, Xsi^si = [    ] and X±CPi = [±1].

According to the classification theorem of Freedman [7] the intersection form

and the Kirby-Siebenmann obstruction KS(Af) e H4(M; Z2) = Z2 completely
determine the homeomorphism type of M. Note that if X is even, then the

Kirby-Siebenmann obstruction is determined by the signature of X: KS(Af) =

\o(M) (mod 2). On the other hand, every symmetric, bilinear, unimodular
form X can be realized as the intersection form of a compact 4-manifold. If

X is even, there is a unique M realizing X. Otherwise, there are two (homo-

topy equivalent) 4-manifolds realizing the two possible values for the Kirby-

Siebenmann obstruction.

Additional structures on M limit the set of forms which can be realized. For
instance, the intersection forms of simply connected, closed, spin 4-manifolds

are precisely the even forms. A theorem of Rohlin [11] implies that if M is
smooth and spin, then a(M) = 0 (mod 16). Thus many topological 4-manifolds

cannot be smoothed, e.g., the E% manifold. Donaldson [2, 3] showed that the
only definite forms realized as the intersection forms of smooth, compact 4-

manifolds are the standard diagonalizable forms. For instance, his theorem

implies that the Ex¿ manifold is exotic. Note that this manifold was not de-

tected by Rohlin's theorem. Kwasik and Vogel [9] proved that if a topological

4-manifold M supports a locally linear involution, then KS(AT) is trivial. For
instance, the E% manifold does not admit a locally linear involution. Below
we consider all the E4m manifolds which are not detected by the theorem of

Kwasik and Vogel in the case when m is divisible by 4.

Theorem 4.1. Let M denote an E4m manifold. Then M admits a locally linear
involution if and only if m is odd and the Kirby-Siebenmann obstruction of M

vanishes.

Proof. Suppose m is odd and KS(Af) = 0. By (3.4), H2(M) supports a free
involution which preserves the intersection pairing and induces an even twisted

form. By Edmonds-Ewing [6, 7.1], M admits a locally linear involution with

two fixed points.
Now suppose that either m is even or KS(Af) # 0. If KS(Af ) / 0, then M

admits no locally linear involution, by Kwasik-Vogel [9]. We may, therefore,
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assume that m = 0 (mod 4). Let g: M -+ M be a locally linear involution. By

Edmonds [5, 4.1], the fixed-point set F consists either of precisely two points
or of a single, nullhomologous 2-sphere, and H2(M) is free over Z[Z2]. A
direct geometric argument implies that x • g*y = x • [F] (mod 2). It therefore
follows that the twisted form (x, y) i-» x • g,y is even. By (3.4), every free

involution on H2(M) induces an odd twisted form. The result follows.   D

Remark 4.2. One can show that every simply connected, closed, indefinite 4-

manifold with trivial Kirby-Siebenmann obstruction admits a locally linear in-
volution. The result of Donaldson [2] implies that every smooth simply con-

nected 4-manifold admits a locally linear involution. Edmonds conjectured in

[4] that every simply connected, closed, odd 4-manifold M also supports such
an action, provided KS(Af) = 0. The Ei6m manifolds are the first explicit

examples of four-manifolds whose Kirby-Siebenmann invariants are trivial and

which do no admit locally linear involutions.
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