# MAYER-VIETORIS FORMULA FOR THE DETERMINANT OF A LAPLACE OPERATOR ON AN EVEN-DIMENSIONAL MANIFOLD 

YOONWEON LEE

(Communicated by Peter Li)


#### Abstract

Let $\Delta$ be a Laplace operator acting on differential $p$-forms on an even-dimensional manifold $M$. Let $\Gamma$ be a submanifold of codimension 1 . We show that if $B$ is a Dirichlet boundary condition and $R$ is a DirichletNeumann operator on $\Gamma$, then $\operatorname{Det}(\Delta+\lambda)=\operatorname{Det}(\Delta+\lambda, B) \operatorname{Det}(R+\lambda)$ and $\operatorname{Det}^{*} \Delta=\frac{1}{(\operatorname{det} A)^{2}} \operatorname{Det}(\Delta, B) \operatorname{Det}^{*} R$. This result was established in 1992 by Burghelea, Friedlander, and Kappeler for a 2 -dimensional manifold with $p=$ 0 .


## 1. Introduction

Let $M$ be a compact oriented Riemannian manifold of dimension $d$, and let $\Gamma$ be a submanifold of $M$ with dimension $d-1$ such that $\Gamma$ has a collared neighborhood $U$ diffeomorphic to $\Gamma \times(-1,1)$. Let $M_{\Gamma}$ be the compact manifold with boundary $\Gamma \cup \Gamma$ obtained by cutting $M$ along $\Gamma$. Let $E=\Lambda^{p} T^{*} M$ be a $p$-th exterior product of the cotangent bundle $T^{*} M, i: M_{\Gamma} \rightarrow M$ be the identification map, and $E_{\Gamma}:=i^{*} E$.

Define the Dirichlet boundary condition $(\Delta+\lambda, B)$ to be

$$
\begin{gathered}
(\Delta+\lambda, B): C^{\infty}\left(M_{\Gamma}, E_{\Gamma}\right) \rightarrow C^{\infty}\left(M_{\Gamma}, E_{\Gamma}\right) \oplus C^{\infty}\left(\partial M_{\Gamma},\left.E_{\Gamma}\right|_{\partial M_{\Gamma}}\right), \\
\omega \mapsto\left((\Delta+\lambda) \omega,\left.\omega\right|_{\partial M_{\Gamma}}\right) .
\end{gathered}
$$

Define the Poisson operator $P_{B}$ to be the restriction of $(\Delta+\lambda, B)^{-1}$ to $0 \oplus$ $C^{\infty}\left(\partial M_{\Gamma},\left.E_{\Gamma}\right|_{\partial M_{\Gamma}}\right)$. Let $\nu$ be a unit normal vector field along $\partial M_{\Gamma}$; one can extend $\nu$ to be a global vector field on $M_{\Gamma}$ by using a cut-off function. Define the Neumann boundary condition $C$ to be

$$
\begin{gathered}
C: C^{\infty}\left(M_{\Gamma}, E_{\Gamma}\right) \rightarrow C^{\infty}\left(\partial M_{\Gamma},\left.E_{\Gamma}\right|_{\partial M_{\Gamma}}\right), \\
\left.\omega \mapsto \nabla_{\nu} \omega\right|_{\partial M_{\Gamma} .}
\end{gathered}
$$

Received by the editors September 13, 1993.
1991 Mathematics Subject Classification. Primary 58G26.

Definition. For any positive real number $\lambda>0$, define $R(\lambda)$ to be the composition of the following maps:

$$
\begin{aligned}
C^{\infty}\left(\Gamma,\left.E\right|_{\Gamma}\right) & \xrightarrow{\Delta_{i q}} C^{\infty}\left(\Gamma,\left.E\right|_{\Gamma}\right) \oplus C^{\infty}\left(\Gamma,\left.E\right|_{\Gamma}\right) \oplus 0 \\
& \xrightarrow{P_{B}} C^{\infty}\left(M_{\Gamma}, E_{\Gamma}\right) \\
& \xrightarrow{C} C^{\infty}\left(\Gamma,\left.E\right|_{\Gamma}\right) \oplus C^{\infty}\left(\Gamma,\left.E\right|_{\Gamma}\right) \\
& \xrightarrow{-\Delta_{i f}} C^{\infty}\left(\Gamma,\left.E\right|_{\Gamma}\right),
\end{aligned}
$$

where $\Delta_{i a}$ is the diagonal inclusion and $\Delta_{i f}$ is the difference map.
Then $R(\lambda)$ is a positive definite selfadjoint elliptic operator. When $\lambda=0$, both the Laplacian $\Delta$ and $R$ have zero eigenvalues and so $\operatorname{det} \Delta=\operatorname{det} R=$ 0 . In this case we define the modified determinants $\operatorname{det}^{*} \Delta$ and $\operatorname{det}^{*} R$ to be the determinants of $\Delta$ and $R$ respectively, when restricted to the orthogonal complement of the null space.

In [BFK], Burghelea, Friedlander, and Kappeler proved that on a 2-dimensional manifold and for the trivial line bundle $E=\Lambda^{0} T^{*} M$,
(1) $\operatorname{Det}(\Delta+\lambda)=\operatorname{Det}(\Delta+\lambda, B) \operatorname{Det} R(\lambda)$ for $\lambda>0$,
(2) $\operatorname{Det}^{*} \Delta=\frac{V}{T} \operatorname{Det}(\Delta, B) \operatorname{Det}^{*} R$,
where $V$ is the area of the manifold and $l$ is the length of $\Gamma$.
Let $\mathscr{H}_{p}$ be the space of harmonic $p$-forms equipped with the natural inner product $\langle\varphi, \psi\rangle=\int_{M} \varphi \wedge * \psi=\int_{M}(\varphi, \psi) d \operatorname{vol}(M)$, where (, ) is a metric in $E=\Lambda^{p} T^{*} M$ induced by the Riemannian metric $g$ on $M$. Let $\left.\mathscr{H}_{p}\right|_{\Gamma}$ be the restriction of harmonic $p$-forms to $\Gamma$. Define an inner product on $\left.\mathscr{H}_{p}\right|_{\Gamma}$ by $\langle\alpha, \beta\rangle_{\Gamma}=\int_{\Gamma}(\alpha, \beta) d \mu_{\Gamma}$, where $d \mu_{\Gamma}$ is a volume element of $\Gamma$ coming from $g$ restricted to $\Gamma$.

Suppose $k=\operatorname{dim} \mathscr{H}_{p}$, and let $\psi_{1}, \ldots, \psi_{k}$ be an orthonormal basis of $\mathscr{H}_{p}$ and $\phi_{1}, \ldots, \phi_{k}$ be an orthonormal basis of $\left.\mathscr{H}_{p}\right|_{\Gamma}$. Let $J:\left.\mathscr{H}_{p} \rightarrow \mathscr{H}_{p}\right|_{\Gamma}$ denote the restriction map. Let $J\left(\psi_{i}\right)=a_{i j} \phi_{j}$ and let $A=\left(a_{i j}\right)_{1 \leq i, j \leq k}$. In this paper we extend the result of Burghelea et al. to arbitrary even dimensions and arbitrary $p$-forms.

If $M$ is a compact oriented Riemannian manifold of dimension $d$ with $d$ even and $E=\Lambda^{p} T^{*} M$, then

Theorem A. $\operatorname{Det}(\Delta+\lambda, B)=\operatorname{Det}(\Delta+\lambda, B) \operatorname{Det} R(\lambda)$ for any $\lambda>0$.
Theorem B. $\operatorname{Det}^{*} \Delta=\frac{1}{(\operatorname{det} A)^{2}} \operatorname{Det}(\Delta, B) \operatorname{Det}^{*} R$.
Remark. If $p=0$, then $E=M \times R$, and the matrix $A$ is $\left(\frac{\sqrt{l}}{\sqrt{V}}\right)$. Hence Theorem B reduces to

$$
\operatorname{Det}^{*} \Delta=\frac{V}{l} \operatorname{Det}(\Delta, B) \operatorname{Det}^{*} R
$$

as stated in [BFK].

## II. The proof of Theorem A

In [BFK], it is shown that

$$
\operatorname{Det}(\Delta+\lambda)=c \operatorname{Det}(\Delta+\lambda, B) \cdot \operatorname{Det} R(\lambda)
$$

and that $\log \operatorname{Det}(\Delta+\lambda), \log \operatorname{Det}(\Delta+\lambda, B)$, and $\log \operatorname{Det} R(\lambda)$ admit asymptotic expansions;

$$
\begin{gathered}
\log \operatorname{Det}(\Delta+\lambda), \log \operatorname{Det}(\Delta+\lambda, B) \sim \sum_{k=-d}^{\infty} \alpha_{k}|\lambda|^{-k / 2}+\beta_{0} \log |\lambda|, \quad \text { with } \alpha_{0}=0 \\
\log \operatorname{Det} R(\lambda) \sim \sum_{j=-d}^{\infty} \pi_{j}|\lambda|^{-j / 2}+\sum_{j=0}^{d} q_{j}|\lambda|^{j / 2} \log |\lambda|, \quad \text { with } \\
\pi_{0}=\left.\sum_{j} \frac{\partial}{\partial s} \frac{1}{(2 \pi)^{d-1}} \int_{R^{d-1}} J_{d-1}(s, \lambda ; x) \varphi_{j}(x)\right|_{s=0} d \operatorname{vol}(x)
\end{gathered}
$$

where

$$
\begin{aligned}
J_{d-1}= & (s, \lambda ; x)=\frac{1}{2 \pi i} \int_{R^{d-1}} d \xi \int_{\gamma} \mu^{-s} r_{-1-(d-1)}\left(\mu, \frac{\lambda}{|\lambda|}, x, \xi\right) d \mu \\
r_{-1}= & \left(\mu-p_{1}(\lambda, x, \xi)\right)^{-1} \\
r_{-1-j}= & -\left(\mu-p_{1}(\lambda, x, \xi)\right)^{-1} \\
& \cdot \sum_{k=0}^{j-1} \sum_{\substack{\alpha \\
|\alpha|+l=j-k}} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} p_{1-l}(\lambda, x, \xi) D_{x}^{\alpha} r_{-1-k}(\mu, \lambda, x, \xi)
\end{aligned}
$$

$\sigma(R(\lambda)) \sim p_{1}+p_{0}+p_{-1}+\cdots$ asymptotic symbol of $R(\lambda),\left\{\varphi_{j}\right\}$ a partition of unity subordinate to coordinate charts, and $\gamma$ is a curve on a complex plane enclosing all the eigenvalues of $R(\lambda)$ counterclockwise.

Hence

$$
\log c=-\pi_{0}
$$

The proof of Theorem A reduces to the verification of the following equation:

$$
p_{1-j}(x,-\xi, \lambda)=(-1)^{j} p_{1-j}(x, \xi, \lambda)
$$

Then $r_{-1-j}\left(\mu, \frac{\lambda}{|\lambda|}, x,-\xi\right)=(-1)^{j} r_{-1-j}\left(\mu, \frac{\lambda}{|\lambda|}, x, \xi\right)$, so when $d$ is even, $r_{-1-(d-1)}\left(\mu, \frac{\lambda}{|\lambda|}, x, \xi\right)$ is odd with respect to $\xi$. So $J_{d-1}=0$ and $\pi_{0}=0$. Therefore we conclude

$$
\operatorname{Det}(\Delta+\lambda)=\operatorname{Det}(\Delta+\lambda, B) \operatorname{Det} R(\lambda)
$$

Definition. Let $U$ be a collared neighborhood of $\Gamma$ diffeomorphic to $\Gamma \times$ $(-1,1)$ with diffeomorphism $\eta: U \rightarrow \Gamma \times(-1,1)$. Let $\Gamma_{t}=\eta^{-1}(\Gamma \times t)$, $-1<t<1$. Let $N_{t}^{+}, N_{t}^{-}$be Neumann operators to each side with respect to $\Delta+\lambda$; i.e. if $\varphi \in C^{\infty}\left(\Gamma_{t},\left.E\right|_{\Gamma_{t}}\right)$, define $N_{t}^{+}(\varphi)=\left.\nabla_{\nu_{t}} u\right|_{\Gamma_{t}}$, where $(\Delta+\lambda) u=0$ in $M-\Gamma_{t},\left.u\right|_{\Gamma_{t}}=\varphi$, and $\nu_{t}$ is a normal vector field along $\Gamma_{t}$.

Then

$$
R(\lambda)=-\left(N_{0}^{+}+N_{0}^{-}\right) .
$$

Lemma 1. In a local coordinate system such that the first fundamental form looks like

$$
\left(\begin{array}{cc}
g_{i j}(x, t) & 0 \\
0 & 1
\end{array}\right)
$$

on $\Gamma \times(-1,1)$, the Laplacian is $\Delta=-\frac{d^{2}}{d t^{2}}+F(x, t) \frac{d}{d t}+\Delta_{t}$, where $\Delta_{t}$ is the Laplacian on $\Gamma_{t}$ and $F(x, t)$ is a $C^{\infty}$-function valued $\binom{d}{p} \times\binom{ d}{p}$ matrix. Then

$$
\begin{aligned}
& \frac{d N_{t}^{+}}{d t}=-\left(N_{t}^{+}\right)^{2}+F(x, t) N_{t}^{+}+\left(\Delta_{t}+\lambda\right) \\
& \frac{d N_{t}^{-}}{d t}=\left(N_{t}^{-}\right)^{2}+F(x, t) N_{t}^{-}-\left(\Delta_{t}+\lambda\right)
\end{aligned}
$$

Remark. The idea to consider the Neumann operator as a solution of operatorvalued differential equations goes back to I. M. Gel'fand.
Proof. It is enough to show that the first statement is true. Let $\varphi \in$ $C^{\infty}\left(\Gamma_{t},\left.E\right|_{\Gamma_{t}}\right)$. Choose $u(x, t) \in C^{\infty}\left(M_{\Gamma_{t}}, E_{\Gamma_{t}}\right)$ such that $(\Delta+\lambda) u(x, t)=0$ on $M-\Gamma_{t}$ and $u(x, t) \mid \Gamma_{t}=\varphi$. Then

$$
\begin{aligned}
\frac{d}{d t} u(x, t) & =N_{t}^{+}(u(x, t)), \\
\frac{d^{2}}{d t^{2}} u(x, t) & =\frac{d}{d t}\left(N_{t}^{+}(u(x, t))\right)=\frac{d N_{t}^{+}}{d t}(u(x, t))+N_{t}^{+}\left(\frac{d u}{d t}\right) \\
& =\left(\frac{d N_{t}^{+}}{d t}+\left(N_{t}^{+}\right)^{2}\right) u(x, t), \quad \text { and } \\
\frac{d^{2}}{d t^{2}} u(x, t) & =F(x, t) \frac{d u}{d t}+\left(\Delta_{t}+\lambda\right) u(x, t) \\
& =\left(F(x, t) N_{t}^{+}+\Delta_{t}+\lambda\right) u(x, t) .
\end{aligned}
$$

Hence $\frac{d N_{+}^{+}}{d t}+\left(N_{t}^{+}\right)^{2}=F(x, t) N_{t}^{+}+\left(\Delta_{t}+\lambda\right)$, so

$$
\frac{d N_{t}^{+}}{d t}=-\left(N_{t}^{+}\right)^{2}+F(x, t) N_{t}^{+}+\left(\Delta_{t}+\lambda\right) .
$$

Let

$$
\begin{aligned}
\sigma\left(N_{t}^{+}\right) & \sim \alpha_{1}+\alpha_{0}+\cdots+\alpha_{1-i}+\cdots, \\
\sigma\left(N_{t}^{-}\right) & \sim \beta_{1}+\beta_{0}+\cdots+\beta_{1-i}+\cdots, \\
\sigma(\Delta+\lambda) & \sim\left(\sigma_{2}+\lambda\right)+\sigma_{1}+\sigma_{0} .
\end{aligned}
$$

Note that

$$
\begin{gathered}
\sigma_{2}+\lambda=\left(\sum_{i j=1}^{d-1} g^{i j} \xi_{i} \xi_{j}+\lambda\right) I d, \\
\sigma\left(\left(N_{t}^{+}\right)^{2}\right) \sim \sum_{k=0}^{\infty} \sum_{\substack{|\omega|+i+j=k \\
i, j \geq 0}} \frac{1}{\omega!} d_{\xi}^{\omega} \alpha_{1-i} D_{x}^{\omega} \alpha_{1-j},
\end{gathered}
$$

where $\omega$ is a multi-index and $D_{x}=\frac{1}{i} \frac{d}{d x}$.
Since $\frac{d N_{+}^{+}}{d t}, \frac{d N_{1}^{-}}{d t}$ are first order operators, $-\alpha_{1}^{2}+\left(\sigma_{2}+\lambda\right)=0$ and $\beta_{1}^{2}-$ $\left(\sigma_{2}+\lambda\right)=0$. So

$$
\alpha_{1}=\beta_{1}=\sqrt{\sum_{i j=1}^{d-1} g^{i j} \xi_{i} \xi_{j}+\lambda I d} \text { and } \alpha_{1}+\beta_{1}=2 \sqrt{\sum_{i j=1}^{d-1} g^{i j} \xi_{i} \xi_{j}+\lambda I d}
$$

which is even with respect to $\xi$. Note that $\frac{d \alpha_{1}}{d t}=-\left(2 \alpha_{0} \alpha_{1}+d_{\xi} \alpha_{1} \cdot D_{x} \alpha_{1}\right)+$ $F \alpha_{1}+\sigma_{1}$ and $\frac{d \beta_{1}}{d t}=\left(2 \beta_{0} \beta_{1}+d_{\xi} \beta_{1} \cdot D_{x} \beta_{1}\right)+F \beta_{1}-\sigma_{1}$. Hence

$$
\begin{aligned}
& \alpha_{0}=\frac{1}{2} \alpha_{1}^{-1}\left(-\frac{d \alpha_{1}}{d t}-d_{\xi} \alpha_{1} \cdot D_{x} \alpha_{1}+F \alpha_{1}+\sigma_{1}\right) \\
& \beta_{0}=\frac{1}{2} \beta_{1}^{-1}\left(\frac{d \beta_{1}}{d t}-d_{\xi} \beta_{1} \cdot D_{x} \beta_{1}-F \beta_{1}+\sigma_{1}\right)
\end{aligned}
$$

Since $\alpha_{1}=\beta_{1}$, it follows that $\alpha_{0}+\beta_{0}=\alpha_{1}^{-1}\left(d_{\xi} \alpha_{1} \cdot D_{x} \alpha_{1}+\sigma_{1}\right)$, which is odd with respect to $\xi$.
Theorem. If $\sigma(R(\lambda)) \sim p_{1}+p_{0}+\cdots+p_{1-j}+\ldots$, then $p_{1-k}$, which is equal to $-\alpha_{1-k}-\beta_{1-k}$, is even (odd) with respect to $\xi$ when $k$ is even (odd).
Proof. Note that one has
(*)

$$
\left\{\begin{array}{l}
\alpha_{1-k}=\frac{1}{2} \alpha_{1}^{-1}\left\{-\frac{d \alpha_{1-(k-1)}}{d t}-\sum_{\substack{i+j+|\omega|=k \\
0 \leq i, j \leq k-1}} \frac{1}{\omega!} d_{\xi}^{\omega} \alpha_{1-i} D_{x}^{\omega} \alpha_{1-j}+F \alpha_{1-(k-1)}\right\}, \\
\beta_{1-k}=\frac{1}{2} \beta_{1}^{-1}\left\{\frac{d \beta_{1-(k-1)}}{d t}-\sum_{\substack{i+j+|\omega|=k \\
0 \leq i, j \leq k-1}} \frac{1}{\omega!} d_{\xi}^{\omega} \beta_{1-i} D_{x}^{\omega} \beta_{1-j}-F \beta_{1-(k-1)}\right\}
\end{array}\right.
$$

Since $\alpha_{1}=\beta_{1}=\sqrt{\sum_{i j=1}^{d-1} g^{i j} \xi_{i} \xi_{j}+\lambda} I d$, we can use ( $*$ ) for each $\alpha_{1-i}, \beta_{1-j}$ to express $\alpha_{1-k}$ and $\beta_{1-k}$ in terms of $\alpha_{1}, \sigma_{1}$, and $\sigma_{0}$. In fact,

$$
\begin{aligned}
\alpha_{1-k}= & \sum_{r}(-1)^{r} \frac{1}{2} \alpha_{1}^{-1} \frac{d}{d t}\left\{\frac{1}{2} \alpha_{1}^{-1}\left\{\frac{d}{d t} \cdots \frac{1}{2} \alpha_{1}^{-1}\left(\frac{d}{d t} q_{r}^{k-r}\right) \cdots\right\}\right\} \\
& +\sum_{s}(-1)^{s} \frac{1}{2} \alpha_{1}^{-1} F\left\{\frac{1}{2} \alpha_{1}^{-1}\left\{F \cdots \frac{1}{2} \alpha_{1}^{-1}\left(F \tilde{q}_{s}^{k-s}\right) \cdots\right\}\right\}+P_{k}
\end{aligned}
$$

and

$$
\begin{aligned}
\beta_{1-k}= & \sum_{r}(-1)^{r} \frac{1}{2} \alpha_{1}^{-1} \frac{d}{d t}\left\{\frac{1}{2} \alpha_{1}^{-1}\left\{\frac{d}{d t} \cdots \frac{1}{2} \alpha_{1}^{-1}\left(\frac{d}{d t} q_{r}^{k-r}\right) \cdots\right\}\right\} \\
& +\sum_{s}(-1)^{s} \frac{1}{2} \alpha_{1}^{-1} F\left\{\frac{1}{2} \alpha_{1}^{-1}\left\{F \cdots \frac{1}{2} \alpha_{1}^{-1}\left(F \tilde{q}_{s}^{k-s}\right) \cdots\right\}\right\}+P_{k}
\end{aligned}
$$

where $\frac{d}{d t}$ appears $r$ times and $F$ appears $s$ times, respectively, and $q_{r}^{k-r}, \tilde{q}_{s}^{k-s}$, $P_{k}$ are functions consisting of some jets of $\alpha_{1}, \alpha_{1}^{-1}, \sigma_{1}$, and $\sigma_{0}$ satisfying

$$
\begin{aligned}
q_{r}^{k-r}(x,-\xi) & =(-1)^{k-r} q_{r}^{k-r}(x, \xi) \\
\tilde{q}_{s}^{k-s}(x,-\xi) & =(-1)^{k-s} \tilde{q}_{s}^{k-s}(x, \xi) \\
P_{k}(x,-\xi) & =(-1)^{k} P_{k}(x, \xi)
\end{aligned}
$$

Hence

$$
\begin{aligned}
-p_{1-k}= & \alpha_{1-k}+\beta_{1-k} \\
= & 2 \sum_{r: \text { even }} \frac{1}{2} \alpha^{-1} \frac{d}{d t}\left\{\frac{1}{2} \alpha_{1}^{-1}\left\{\frac{d}{d t} \cdots \frac{1}{2} \alpha_{1}^{-1}\left(\frac{d}{d t} q_{r}^{k-r}\right) \cdots\right\}\right\} \\
& +2 \sum_{s: \text { even }} \frac{1}{2} \alpha_{1}^{-1} F\left\{\frac{1}{2} \alpha_{1}^{-1}\left\{F \cdots \frac{1}{2} \alpha_{1}^{-1}\left(F \tilde{q}_{s}^{k-s}\right) \cdots\right\}\right\}+2 P_{k}
\end{aligned}
$$

and so $p_{1-k}$ is even if $k$ is even, and $p_{1-k}$ is odd if $k$ is odd, with respect to $\xi$.

## III. The proof of Theorem B

Lemma 2. $R(\varepsilon)^{-1}=J \circ(\Delta+\varepsilon)^{-1} \circ\left(\cdot \otimes \delta_{\Gamma}\right)$, where $J$ is the restriction map to $\Gamma$ and $\delta_{\Gamma}$ is the Dirac $\delta$-function along $\Gamma$.
Proof. For $\varphi \in C^{\infty}\left(\Gamma,\left.E\right|_{\Gamma}\right)$ choose $u$ such that $(\Delta+\varepsilon) u=0$ in $M-\Gamma$ and $\left.u\right|_{\Gamma}=\varphi$. Then

$$
\frac{d u}{d t}= \begin{cases}\nabla_{\nu_{t}} u=N_{t}^{+}(u(x, t)) & \text { for } t>0 \\ -\nabla_{-\nu_{t}} u=-N_{t}^{-}(u(x, t)) & \text { for } t<0\end{cases}
$$

Now $R(\varepsilon) \varphi=-N_{0}^{+}(\varphi)-N_{0}^{-}(\varphi)$. So

$$
\frac{d u}{d t}= \begin{cases}-R(\varepsilon) \varphi+N_{t}^{+}(u(x, t))+R(\varepsilon) \varphi, & t \geq 0 \\ -N_{t}^{-}(u(x, t)), & t<0\end{cases}
$$

Let

$$
v(x, t)= \begin{cases}N_{t}^{+}(u(x, t))+R(\varepsilon) \varphi, & t \geq 0 \\ -N_{t}^{-}(u(x, t)), & t<0\end{cases}
$$

Then

$$
\frac{d u}{d t}=-R(\varepsilon)(\varphi) \otimes H(t)+v(x, t)
$$

For $t \geq 0$,

$$
\begin{aligned}
\frac{d v}{d t}(x, t) & =\frac{d}{d t} N_{t}^{+}(u(x, t))=\left\{\frac{d N_{t}^{+}}{d t}+\left(N_{t}^{+}\right)^{2}\right\} u(x, t) \\
& =\left(F(x, t) N_{t}^{+}+\Delta_{t}+\varepsilon\right) u(x, t)
\end{aligned}
$$

by Lemma 1. In the same way for $t<0, \frac{d v}{d t}=\left(-F(x, t) N_{t}^{-}+\Delta_{t}+\varepsilon\right) u(x, t)$. Hence

$$
\begin{aligned}
& \frac{d^{2} u}{d t^{2}}=-R(\varphi) \otimes \delta_{\Gamma}+\frac{d v}{d t}(x, t) \\
&=-R(\varphi) \otimes \delta_{\Gamma}+\left(F(x, t) N_{t}^{+}+\Delta_{t}+\varepsilon\right) u(x, t), \\
&-\frac{d^{2} u}{d t^{2}}+\left(F(x, t) N_{t}^{+}+\Delta_{t}+\varepsilon\right) u(x, t)=R(\varphi) \otimes \delta_{\Gamma} \\
&(\Delta+\varepsilon) u=R(\varphi) \otimes \delta_{\Gamma}
\end{aligned}
$$

Hence

$$
R(\varepsilon)^{-1}(\varphi)=J \circ(\Delta+\varepsilon)^{-1} \circ\left(\varphi \otimes \delta_{\Gamma}\right)
$$

Theorem B. $\operatorname{Det}^{*}(\Delta)=\frac{1}{(\operatorname{det} A)^{2}} \operatorname{Det}(\Delta, B) \cdot \operatorname{Det}^{*} R$.
Proof. Let $k=\operatorname{dim} \mathscr{H}_{p}$. Then

$$
\begin{equation*}
\log \operatorname{Det}(\Delta+\varepsilon)=k \log \varepsilon+\log \operatorname{Det}^{*}(\Delta)+o(\varepsilon) \tag{1}
\end{equation*}
$$

Denote by $\mu_{j}=\mu_{j}(\varepsilon)(j \geq 1)$ the eigenvalues of $R(\varepsilon)$ with $0<\mu_{1}(\varepsilon) \leq \cdots \leq$ $\mu_{k}(\varepsilon)<\mu_{k+1}(\varepsilon) \leq \cdots$. It is clear that $\lim _{\varepsilon \rightarrow 0} \mu_{j}(\varepsilon)=0$ for $1 \leq j \leq k$. Then

$$
\log \operatorname{Det} R(\varepsilon)=\log \mu_{1}(\varepsilon) \cdots \mu_{k}(\varepsilon)+\log \operatorname{Det}^{*} R+o(\varepsilon)
$$

Now we want to calculate $\mu_{1}(\varepsilon) \cdots \mu_{k}(\varepsilon)$. Let $\left\{\psi_{j}\right\}_{j \geq 1}$ be the complete orthonormal system of eigenforms of $\Delta$ with eigenvalue $\lambda_{j}$ in $L^{2}(M, E)$. For any $\varphi \in C^{\infty}\left(\Gamma,\left.E\right|_{\Gamma}\right), \varphi \otimes \delta_{\Gamma} \in H^{-1}(M, E)$ and $(\Delta+\varepsilon)^{-1}\left(\varphi \otimes \delta_{\Gamma}\right) \in L^{2}(M, E)$.

$$
\begin{aligned}
\left\langle(\Delta+\varepsilon)^{-1}\left(\varphi \otimes \delta_{\Gamma}\right), \psi_{j}\right\rangle & =\left\langle\varphi \otimes \delta_{\Gamma},(\Delta+\varepsilon)^{-1} \psi_{j}\right\rangle=\left\langle\varphi \otimes \delta_{\Gamma}, \frac{1}{\lambda_{j}+\varepsilon} \psi_{j}\right\rangle \\
& =\frac{1}{\lambda_{j}+\varepsilon} \int_{\Gamma}\left(\varphi, \psi_{j}\right) d \mu_{\Gamma}
\end{aligned}
$$

where $d \mu_{\Gamma}$ is a volume element in $\Gamma$. Hence

$$
(\Delta+\varepsilon)^{-1}\left(\varphi \otimes \delta_{\Gamma}\right)=\sum_{j=1}^{\infty} \frac{1}{\lambda_{j}+\varepsilon} \int_{\Gamma}\left(\varphi, \psi_{j}\right) d \mu_{\Gamma} \cdot \psi_{j}
$$

Let $\psi_{1}, \ldots, \psi_{k}$ be harmonic forms and $\lambda_{1}=\cdots=\lambda_{k}=0$. Then

$$
\begin{equation*}
\left.R(\varepsilon)^{-1} \varphi=\left.\frac{1}{\varepsilon} \sum_{i=1}^{k} \int_{\Gamma}\left(\varphi, \psi_{i}\right) d \mu_{\Gamma} \cdot \psi_{i}\right|_{\Gamma}+\sum_{j=k+1}^{\infty} \frac{1}{\lambda_{j}+\varepsilon} \int_{\Gamma}\left(\varphi, \psi_{j}\right) d \mu_{\Gamma} \cdot \psi_{j} \right\rvert\, \Gamma \tag{2}
\end{equation*}
$$

From (2), one can check that $R(\varepsilon)^{-1}$ is symmetric and positive definite; it follows that $R(\varepsilon)$ is also symmetric and positive definite.

Let $\phi_{1}(\varepsilon), \ldots, \phi_{k}(\varepsilon)$ be orthonormal eigenforms of $R(\varepsilon)$ corresponding to eigenvalues $\mu_{1}(\varepsilon), \ldots, \mu_{k}(\varepsilon)$. Then $\phi_{j}(\varepsilon) \rightarrow \phi_{j}$ as $\varepsilon \rightarrow 0$, where $\phi_{j}$ is the restriction of a harmonic form to $\Gamma$ with $\left\langle\phi_{j}, \phi_{j}\right\rangle_{\Gamma}=1$. Let $a_{i j}(\varepsilon)=$ $\left\langle\psi_{i}, \phi_{j}(\varepsilon)\right\rangle_{\Gamma}, 1 \leq i, j \leq k$, and $A(\varepsilon)=\left(a_{i j}(\varepsilon)\right)$. Now $\left.\psi_{i}\right|_{\Gamma}=a_{i j}(\varepsilon) \phi_{j}(\varepsilon)+$ $\left.\tilde{\psi}_{i}(\varepsilon)\right|_{\Gamma}$ for some $\left.\tilde{\psi}_{i}(\varepsilon)\right|_{\Gamma} \in\left(\operatorname{span}\left\{\phi_{1}(\varepsilon), \ldots, \phi_{k}(\varepsilon)\right\}\right)^{\perp}$. Define

$$
I: C^{\infty}\left(\Gamma,\left.E\right|_{\Gamma}\right) \rightarrow C^{\infty}\left(\Gamma,\left.E\right|_{\Gamma}\right)
$$

by

$$
\left.\varphi \mapsto \sum_{j=1}^{k} \int_{\Gamma}\left(\varphi, \psi_{j}\right) d \mu_{\Gamma} \cdot \psi_{j}\right|_{\Gamma}=\sum_{j=1}^{k}\left\langle\varphi, \psi_{j}\right\rangle_{\Gamma} \cdot \psi_{j} \mid \Gamma
$$

Then

$$
\left\langle I\left(\phi_{i}(\varepsilon)\right), \phi_{j}(\varepsilon)\right\rangle_{\Gamma}=\sum_{l=1}^{k} a_{l i}(\varepsilon) a_{l j}(\varepsilon)=\left({ }^{t} A A\right)_{i j}(\varepsilon)
$$

Define

$$
G_{\varepsilon}: C^{\infty}\left(\Gamma,\left.E\right|_{\Gamma}\right) \rightarrow C^{\infty}\left(\Gamma,\left.E\right|_{\Gamma}\right)
$$

by

$$
\left.\varphi \mapsto \sum_{j=k+1}^{\infty} \frac{1}{\lambda_{j}+\varepsilon}\left\langle\varphi, \psi_{j}\right\rangle_{\Gamma} \cdot \psi_{j}\right|_{\Gamma}
$$

Then $\left\|G_{\varepsilon}\right\|_{L^{2}}$ converges to $\frac{1}{\lambda_{k+1}}>0$ as $\varepsilon \rightarrow 0$. Now

$$
R(\varepsilon)^{-1}(\varphi)=\frac{1}{\varepsilon} I(\varphi)+G_{\varepsilon}(\varphi)
$$

For $1 \leq j \leq k$,

$$
\begin{aligned}
\frac{1}{\mu_{j}(\varepsilon)} & =\left\langle R(\varepsilon)^{-1} \phi_{j}(\varepsilon), \phi_{j}(\varepsilon)\right\rangle \\
& =\frac{1}{\varepsilon}\left\langle I\left(\phi_{j}(\varepsilon)\right), \phi_{j}(\varepsilon)\right\rangle+\left\langle G_{\varepsilon}\left(\phi_{j}(\varepsilon)\right), \phi_{j}(\varepsilon)\right\rangle \\
& =\frac{1}{\varepsilon}\left({ }^{t} A A\right)_{j j}(\varepsilon)+N_{j}(\varepsilon)
\end{aligned}
$$

where $N_{j}(\varepsilon)=\left\langle G_{\varepsilon}\left(\phi_{j}(\varepsilon)\right), \phi_{j}(\varepsilon)\right\rangle_{\Gamma}$ is bounded as $\varepsilon \rightarrow 0$. For $i \neq j, 1 \leq i, j \leq$ $k$,

$$
\begin{aligned}
0 & =\left\langle R(\varepsilon)^{-1}\left(\phi_{i}(\varepsilon)\right), \phi_{j}(\varepsilon)\right\rangle \\
& =\frac{1}{\varepsilon}\left\langle I\left(\phi_{i}(\varepsilon)\right), \phi_{j}(\varepsilon)\right\rangle+\left\langle G_{\varepsilon}\left(\phi_{i}(\varepsilon)\right), \phi_{j}(\varepsilon)\right\rangle \\
& =\frac{1}{\varepsilon}\left({ }^{t} A A\right)_{i j}(\varepsilon)+\left\langle G_{\varepsilon}\left(\phi_{i}(\varepsilon)\right), \phi_{j}(\varepsilon)\right\rangle .
\end{aligned}
$$

Since $\left({ }^{t} A A\right)_{i j}(\varepsilon)$ and $\left\langle G_{\varepsilon}\left(\phi_{i}(\varepsilon)\right), \phi_{j}(\varepsilon)\right\rangle$ are bounded, $(t A A)_{i j}(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow$ 0 . So

$$
\begin{aligned}
\frac{1}{\mu_{1}(\varepsilon) \cdots \mu_{k}(\varepsilon)} & =\left(\frac{1}{\varepsilon}\left({ }^{t} A A\right)_{11}+N_{1}(\varepsilon)\right) \cdots\left(\frac{1}{\varepsilon}\left({ }^{t} A A\right)_{k k}+N_{k}(\varepsilon)\right) \\
& =\frac{1}{\varepsilon^{k}}(\operatorname{det} A)^{2}\left(\frac{\left({ }^{t} A A\right)_{11}\left({ }^{t} A A\right)_{22} \cdots\left({ }^{t} A A\right)_{k k}}{(\operatorname{det} A)^{2}}+\varepsilon \cdot \frac{\tilde{N}(\varepsilon)}{(\operatorname{det} A)^{2}}\right)
\end{aligned}
$$

where $\tilde{N}(\varepsilon)$ is bunded as $\varepsilon \rightarrow 0$. Hence

$$
\begin{equation*}
\log \operatorname{Det} R(\varepsilon)=k \log \varepsilon-\log (\operatorname{det} A)^{2}+\log \operatorname{Det}^{*} R+o(\varepsilon) \tag{3}
\end{equation*}
$$

If we combine equation (1) and equation (3), we get

$$
\log \operatorname{Det}^{*} \Delta=-\log (\operatorname{det} A)^{2}+\log \operatorname{Det}^{*} R+\log \operatorname{Det}(\Delta, B)
$$

## Acknowledgements

I thank D. Burghelea for asking me to settle the questions answered by Theorems $A$ and $B$ in this paper.

## References

[BFK] D. Burghelea, L. Friedlander, and T. Kappeler, Mayer-Vietoris type formula for determinants of elliptic differential operators, J. Funct. Anal. 107 (1992), 34.

Department of Mathematics, Ohio State University, Columbus, Ohio 43210
E-mail address: ywlee@math.ohio-state.edu

