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ON AN EVEN-DIMENSIONAL MANIFOLD

YOONWEON LEE

(Communicated by Peter Li)

ABSTRACT. Let A be a Laplace operator acting on differential p-forms on an
even-dimensional manifold M. Let I' be a submanifold of codimension 1.
We show that if B is a Dirichlet boundary condition and R is a Dirichlet-
Neumann operator on I', then Det(A + 1) = Det(A + A, B)Det(R + 4) and
Det*A = (d—“l;)’ Det(A, B)Det* R. This result was established in 1992 by

Burghelea, Friedlander, and Kappeler for a 2-dimensional manifold with p =
0.

1. INTRODUCTION

Let M be a compact oriented Riemannian manifold of dimension 4, and
let ' be a submanifold of M with dimension d —1 such that I" has a collared
neighborhood U diffeomorphicto I'x (-1, 1). Let M1 be the compact man-
ifold with boundary "'UT obtained by cutting M along I'. Let E = A’T*M
be a p-th exterior product of the cotangent bundle T*M, i: M — M be the
identification map, and Er:=i*E.

Define the Dirichlet boundary condition (A+ 4, B) to be

(A'l"ll, B): C°°(Mr, Er') — C°°(M1-, Er) [43) C°°(6M1-, ErlaMr) N
o~ (A+ Ao, olom;)-

Define the Poisson operator Pp to be the restriction of (A+ 4, B)™! to 0&
C>®(0Mr, Er|om;). Let v be a unit normal vector field along d Mr; one can
extend v to be a global vector field on Mr by using a cut-off function. Define
the Neumann boundary condition C to be

C: C>*(Mr, Er) - C*(0Mr, Erlonm;),
w +— V,,(l)|aMl..
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Definition. For any positive real number 1 > 0, define R(1) to be the compo-
sition of the following maps:

C>(T', Elr) % C=(T', E|r) ® C*(T, E|r) & 0
% C>(Mr, Er)
S ¢2(T, Elr) ® C*(T, Elr)
= C=(T, Elp),

where A;, is the diagonal inclusion and A;; is the difference map.

Then R(Z) is a positive definite selfadjoint elliptic operator. When A =0,
both the Laplacian A and R have zero eigenvalues and so detA = detR =
0. In this case we define the modified determinants det*A and det* R to be
the determinants of A and R respectively, when restricted to the orthogonal
complement of the null space.

In [BFK], Burghelea, Friedlander, and Kappeler proved that on a 2-dimen-
sional manifold and for the trivial line bundle E = A°T*M ,

(1) Det(A+ 1) = Det(A+ 4, B)DetR(2) for 4> 0,
(2) Det*A =% Det(A, B) Det* R,

where V' is the area of the manifold and / is the length of T.

Let #, be the space of harmonic p-forms equipped with the natural inner
product (¢, w) = [,, 0 Axy = [, (9, y)dvol(M), where (, ) is a metric in
E = A’T*M induced by the Riemannian metric g on M. Let #|r be the
restriction of harmonic p-forms to I'. Define an inner product on Z|r by
(a, B)r = Jp(a, B)dur, where dur is a volume element of I' coming from g
restricted to IT".

Suppose k = dimJ%,, and let y,, ..., ¥ be an orthonormal basis of %,
and ¢;, ..., ¢ be an orthonormal basis of #Z;|r. Let J: #, — Z;|r denote
the restriction map. Let J(y;) = a;;¢; and let 4 = (a;j)1<i, j<k- In this
paper we extend the result of Burghelea et al. to arbitrary even dimensions and
arbitrary p-forms.

If M is a compact oriented Riemannian manifold of dimension d with d
even and E = A’T*M , then

Theorem A. Det(A+ A, B) = Det(A+ A, B)DetR(A) forany A>0.
Theorem B. Det* A = (Te‘tl‘ﬂf Det(A, B)Det* R.

Remark. If p = 0, then E = M x R, and the matrix A4 is (7L). Hence
Theorem B reduces to

<

Det* A = -Ili Det(A, B)Det* R,

as stated in [BFK].

II. THE PROOF OF THEOREM A
In [BFK], it is shown that

Det(A+A) = cDet(A + 4, B) - Det R(4),
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and that logDet(A+4), logDet(A+ 4, B), and logDet R(1) admit asymptotic
expansions;

logDet(A + 1), logDet(A+ 2, B) ~ > oyl ™ /> + folog|a|,  with ag =0,
k=—d
0 . d .
logDet R(A) ~ > m;|AI™/2 + " g;|a/*log|a|,  with
j=—d Jj=0
o= 2 L[ (s, 25 00(0)lse0dvol(x)
— 95 (2m)7~1 Jpa TN JAtTle= ’
where
J, (s,4;x)= L a’é/ Sr_ ( 4 x,¢)d
d-1 = 27[[ .u - u, | |s s u,

r-—l=(#—pl(l,xa€))_ s
"-1-j=—(ll"171( X, f))_l

Z Z afpl 1 » Xy é)Dgr—l—k(#alaxa é)
=0 || +i2j—k
0(R(4)) ~ p1 + po + p-1 +--- asymptotic symbol of R(4), {¢;} a partition
of unity subordinate to coordinate charts, and y is a curve on a complex plane

enclosing all the eigenvalues of R(A) counterclockwise.
Hence

logc = —my.

The proof of Theorem A reduces to the verification of the following equation:
pl—j(x, _é’ ’1) = (_l)jpl—j(xa 6 ’ A’)

Then r_i_;(u, ﬁ,x, =&) = (-)roi—j(u, ﬁ—|, x, &), so when d is even,

roi—@-1u, ﬁ, x, &) is odd with respect to £. So J;_; =0 and g = 0.
Therefore we conclude

Det(A + A) = Det(A + 4, B) Det R(A).

Definition. Let U be a collared neighborhood of I' diffeomorphic to I' x
(-1, 1) with diffeomorphism n: U — I' x (=1,1). Let I, = =T x 1),
—-1<t< 1. Let Nf, N, be Neumann operators to each side with respect to
A+A;ie. if p € C°°(F,, E|1-,) define N} (¢) = V,u|r,, where (A+A)u =0
in M-T,, ulr, = ¢, and v, is a normal vector field along I, .

Then

R(A) = —(N§ + Ny).

Lemma 1. In a local coordinate system such that the first fundamental form looks

<gij(g’ 1) (l))

like
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on I'x (-1, 1), the Laplacian is A = —5;2; + F(x, t)ﬁ'; + A;, where A, is the

Laplacian on T, and F(x, t) is a C™-function valued (%) x (¢) matrix. Then

+
I o NPV F O, ONF + (804 D),
B NPV 4+ Flx, N7 = (B4 4.

Remark. The idea to consider the Neumann operator as a solution of operator-
valued differential equations goes back to I. M. Gel'fand.

Proof. It is enough to show that the first statement is true. Let ¢ €
C(I%y, Elr,). Choose u(x,t) € C*°(Mr,, Er,) such that (A+ A)u(x,t) =0
on M —T, and u(x, t)[r, = ¢. Then

%u(x, 1) = N}(u(x, 1),

2 +
Sautx, 0 = SO, 0) = D, o)+ N7 ()

(d;? (N+)2> u(x,t), and
j:zu(x f) = F(x, t)d + (A + Dulx, 1)

=(F(x, t)N,+ + A+ Au(x, t).
Hence 4 + (N})? = F(x, )N} + (A +4), 50

df = —(N})2+ F(x, )N} + (A + ).
Let
o(Nf)~ai+ag+-+ai+-,
o(NT)~Bi+Bo+--+B-i+-,
0(A+4) ~ (02 +A) + 0 + 0y.
Note that

d-1
oy +A= (Z gliEE + l) 1d,

ij=1

a((N;")?) ~Z > —dﬁa, iD%ay_j,

k=0 |w|+1+j—k
i,j>0

where  is a multi-index and D, = -3—

Since d—g’*— ‘%V*— are first order operators, —a? + (6, + 4) = 0 and B? —
(2+4)=0. So

ld-l |d-l
al=ﬁ1= Zgij¢i¢j+/11d and al+ﬂ|=2 zgijéiéj"'lld,
ij=1 ij=1
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which is even with respect to £. Note that %",4 = —(2a9a; + dzay - Dxay) +
Fa, + 0, and d{} = (2Bof1 + dgp1 - Dxp1) + F B — 0, . Hence

; i—l (_4‘—10-{1 _d{al Dyo; + Foy +0'|) R

ﬂ=—l3| (%_dtﬂl xﬂl—Fﬂ|+Ul>-

Since a; = B, it follows that ag + fo = a;l(d¢a| + Dya; + a1), which is odd
with respect to &.

Theorem. If 0(R(A)) ~p1+po+---+pi—j+..., then p,_y, which is equal to
—ay_k — Pi—k , is even (odd) with respect to & when k is even (odd).

Proof. Note that one has

(%)

d
al—k=%al { %“—Q Ez+1+|w|_k _fd a-iDPay_j+ Fa,_ —(k— l)}

0<i, j<k-1

ag =

ﬂl-k=%ﬂf'{di,;‘"—'l Y ivjtiol=k mdEB1-iDEBi—j— FBi_k- 1)}

0<i, j<k-1

Since a; = B, = \&U lg'!€,€, + Ald , we can use (x) for each a;_;, fi—; to
express a;_; and f;_; interms of a;, gy, and ay. In fact,

k= D0rger g {ae {2 (79) )
+E( 1)‘—a1 { {F..-%a;'(qu-S)..-}}+Pk

A, d o fd 1 d .,
e St (8- (307)- )
+Z —azl {2 1‘1{F---%al"(Féf")---}}+Pk,

where ;‘f; appears r timesand F appears s times, respectively, and ql‘", d,"“ s
P, are functions consisting of some jets of a;, al“ , 01, and gy satisfying
gk "(x, =€) = (=1)*"gk"(x, &),
G5 (x, =€) = (1) 5gk(x, &),
Pe(x, =€) = (-1)*Pe(x, &).

and

Hence

—Di-k = oy + ik

l —ld _l d 1 d k
-2 % o a{ee (G2 (Ge) -}

r

+2 Y —al { {F~ a7 (Fgks).. }}+2Pk,

§ . even
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and so p;_, is even if k is even, and p,_; is odd if k is odd, with respect
to &.
III. THE PROOF OF THEOREM B

Lemma 2. R(e)~! =Jo(A+¢&)~'o(-®dr), where J is the restriction map to
I" and or is the Dirac J-function along T .
Proof. For ¢ € C°(I', E|r) choose u such that (A+¢&)u=0 in M —-T and
ulr = ¢ . Then

du _ { Vuu = NF(u(x, t)) fort>0,

dt — | -V_,u=-N(u(x,t) fort<DO.
Now R(e)p = —Nj(¢) — Ny (¢). So

du _{ —R(e)p + N} (u(x, t)) + R(e)p, t>0,

dt | =N (u(x, 1), t<0.
et Ni(u(x, ) + R@)p, 20
vlx, 1) = { N-(u(x. 1), " (<0,
Then
Z—l; =—R(e)(p) @ H(t) + v(x, ).
For t >0,

ixs 0= SNz, 0) = { S+ (2 fute.

= (F(x, )N + A+ e)u(x, t)

by Lemma 1. In the same way for 1 <0, 9 = (=F(x, )N, + A+ €)u(x, 1).
Hence

2y dv
7= -R(p) ®dr + E(X, t)

=—R(p) ®Or + (F(x, )N + A, + &)u(x, 1),

LW

Z?+(F(x HNY + A+ e)u(x, t) = R(p) ® or,

(A+¢&)u=R(p) ®dr.

Hence
R(e)™N(p)=Jo(A+e) " o(p®dr).

Theorem B. Det’(A) = 57 Det(A, B) - Det” R.
Proof. Let k =dim %, . Then
(1) logDet(A + ¢€) = kloge + log Det*(A) + o(e).

Denote by u; = uj(e) (j > 1) the eigenvalues of R(e) with 0 < uy(g) <--- <
Ui (€) < ppyr(€) < --- . Ttis clear that lim,_op;(e) =0 for 1 < j < k. Then

logDet R(g) = log i1 (€) - - - ux(€) + log Det* R + o(¢).
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Now we want to calculate u;(e)---ux(e). Let {w;}j>1 be the complete or-
thonormal system of eigenforms of A with eigenvalue 4; in L*(M, E). For
any ¢ € C(T, E|r), ¢Qd0r € H-'(M, E) and (A+¢)~!(¢p®dr) € L} (M , E).

(A+e) (podr), ¥j)=(p®dr, (A+&)"'y)) =(p®dr, I}%"’f)

1
—lj+£/1-(¢’ y;)dur,

where dur is a volume element in I'. Hence

1
lj+8

(A+e)"((o®§r)=z /(¢, y;)dur - y;.
j=1 r

Let v, ..., wx be harmonic forms and 4; =--- =4, =0. Then

1 k e} 1
-1, _ - : W . W
(2) R(e) o= . .-§=1 /r((o, i) dur W1|F+j=§k+l /1,~+a/r(¢’ vj)dur - ¥jlr.

From (2), one can check that R(¢)~! is symmetric and positive definite; it
follows that R(e) is also symmetric and positive definite.

Let @1(€), ..., ¢x(e) be orthonormal eigenforms of R(e) corresponding to
eigenvalues p(€), ..., ux(e). Then ¢j(e) — ¢; as ¢ — 0, where ¢; is
the restriction of a harmonic form to I" with (¢;, ¢;)r = 1. Let a;j(e) =
(wi, ¢j(e))r, 1 <i,j <k, and A(e) = (a;j(e)). Now wilr = a;;(e)p;(e) +
wi(e)|r for some ;(e)|r € (span{¢;(e), ..., dx(e)})L. Define

I: C=(T, E|r) — C=(T, Elr)

by
k k
9 - Z/}_(% i) dur - wilr = > (9, ) yjlr.
Jj=1 j=1
Then
k
(I($i(e)), d5(e)r =D an(e)ay;(e) = (‘AA)(e).
I=1
Define
Ge: C=(T', E|r) —» C=(T', EJr)
by
ad 1
Q= Z A-j +8(¢’ '/’1)1‘ * '//Jll"
Jj=k+1

Then |G|l convergesto ;= >0 as ¢ — 0. Now

1

R(e)™!(p) = Z1(9) + G(9).




1940 YOONWEON LEE

For 1<j<k,

1 1y .
e = (RO, 4,6

(1(8;(€)), 0;(e)) + (Ge(d)(e)) , ¢(e))

| = O |

P (‘A4);;(e) + Nj(e),

where Nj(e) = (Ge(¢)(€)), ¢j(e))r isboundedas e - 0. For i #j, 1<i,j<
k

9

0= (R(e)™ (i(e)), ;(e))
= Liie), 4,(0)) + (Gu(81(2)) . 6(2)

™| — ™

(‘A4A4)i;(e) + (Ge(9i(e)), d(e)).

Since (‘4A);j(e) and (Ge(¢i(e)), ¢;(e)) are bounded, (tA44);j(e) — 0 as ¢ —
0. So

—

1 L Y
) ) (;( AA)n + Nl(s)) (8( AA) i + Nk(8)>

- L e A)z(('AA)H('AA)zz-~-('AA)kk+ N(e) )

(det A)? ¢ et a)?
where N(e) is bunded as ¢ — 0. Hence

(3) log Det R(¢) = k loge — log(det 4)% + log Det* R + o(e).
If we combine equation (1) and equation (3), we get

log Det* A = — log(det 4)? + log Det* R + logDet(A, B).
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