MAYER-VIETORIS FORMULA FOR THE DETERMINANT OF A LAPLACE OPERATOR ON AN EVEN-DIMENSIONAL MANIFOLD #### YOONWEON LEE (Communicated by Peter Li) ABSTRACT. Let Δ be a Laplace operator acting on differential p-forms on an even-dimensional manifold M. Let Γ be a submanifold of codimension 1. We show that if B is a Dirichlet boundary condition and R is a Dirichlet-Neumann operator on Γ , then $\mathrm{Det}(\Delta+\lambda)=\mathrm{Det}(\Delta+\lambda,B)\,\mathrm{Det}(R+\lambda)$ and $\mathrm{Det}^*\Delta=\frac{1}{(\det A)^2}\,\mathrm{Det}(\Delta,B)\,\mathrm{Det}^*R$. This result was established in 1992 by Burghelea, Friedlander, and Kappeler for a 2-dimensional manifold with p=0. ### 1. Introduction Let M be a compact oriented Riemannian manifold of dimension d, and let Γ be a submanifold of M with dimension d-1 such that Γ has a collared neighborhood U diffeomorphic to $\Gamma \times (-1,1)$. Let M_{Γ} be the compact manifold with boundary $\Gamma \cup \Gamma$ obtained by cutting M along Γ . Let $E = \Lambda^p T^*M$ be a p-th exterior product of the cotangent bundle T^*M , $i: M_{\Gamma} \to M$ be the identification map, and $E_{\Gamma} := i^*E$. Define the Dirichlet boundary condition $(\Delta + \lambda, B)$ to be $$(\Delta + \lambda, B) \colon C^{\infty}(M_{\Gamma}, E_{\Gamma}) \to C^{\infty}(M_{\Gamma}, E_{\Gamma}) \oplus C^{\infty}(\partial M_{\Gamma}, E_{\Gamma}|_{\partial M_{\Gamma}}),$$ $$\omega \mapsto ((\Delta + \lambda)\omega, \omega|_{\partial M_{\Gamma}}).$$ Define the Poisson operator P_B to be the restriction of $(\Delta + \lambda, B)^{-1}$ to $0 \oplus C^{\infty}(\partial M_{\Gamma}, E_{\Gamma}|_{\partial M_{\Gamma}})$. Let ν be a unit normal vector field along ∂M_{Γ} ; one can extend ν to be a global vector field on M_{Γ} by using a cut-off function. Define the Neumann boundary condition C to be $$C \colon C^{\infty}(M_{\Gamma}, E_{\Gamma}) \to C^{\infty}(\partial M_{\Gamma}, E_{\Gamma}|_{\partial M_{\Gamma}}),$$ $$\omega \mapsto \nabla_{\nu} \omega|_{\partial M_{\Gamma}}.$$ Received by the editors September 13, 1993. 1991 Mathematics Subject Classification. Primary 58G26. **Definition.** For any positive real number $\lambda > 0$, define $R(\lambda)$ to be the composition of the following maps: $$C^{\infty}(\Gamma, E|_{\Gamma}) \stackrel{\Delta_{iq}}{\longrightarrow} C^{\infty}(\Gamma, E|_{\Gamma}) \oplus C^{\infty}(\Gamma, E|_{\Gamma}) \oplus 0$$ $$\stackrel{P_B}{\longrightarrow} C^{\infty}(M_{\Gamma}, E_{\Gamma})$$ $$\stackrel{C}{\longrightarrow} C^{\infty}(\Gamma, E|_{\Gamma}) \oplus C^{\infty}(\Gamma, E|_{\Gamma})$$ $$\stackrel{-\Delta_{if}}{\longrightarrow} C^{\infty}(\Gamma, E|_{\Gamma}),$$ where Δ_{ia} is the diagonal inclusion and Δ_{if} is the difference map. Then $R(\lambda)$ is a positive definite selfadjoint elliptic operator. When $\lambda = 0$, both the Laplacian Δ and R have zero eigenvalues and so $\det \Delta = \det R = 0$. In this case we define the modified determinants $\det^* \Delta$ and $\det^* R$ to be the determinants of Δ and R respectively, when restricted to the orthogonal complement of the null space. In [BFK], Burghelea, Friedlander, and Kappeler proved that on a 2-dimensional manifold and for the trivial line bundle $E = \Lambda^0 T^* M$, - (1) $\operatorname{Det}(\Delta + \lambda) = \operatorname{Det}(\Delta + \lambda, B) \operatorname{Det} R(\lambda)$ for $\lambda > 0$, - (2) $\operatorname{Det}^* \Delta = \frac{V}{T} \operatorname{Det}(\Delta, B) \operatorname{Det}^* R$, where V is the area of the manifold and l is the length of Γ . Let \mathscr{H}_p be the space of harmonic p-forms equipped with the natural inner product $\langle \varphi , \psi \rangle = \int_M \varphi \wedge *\psi = \int_M (\varphi , \psi) d \mathrm{vol}(M)$, where $(\ ,\)$ is a metric in $E = \Lambda^p T^* M$ induced by the Riemannian metric g on M. Let $\mathscr{H}_p|_{\Gamma}$ be the restriction of harmonic p-forms to Γ . Define an inner product on $\mathscr{H}_p|_{\Gamma}$ by $\langle \alpha , \beta \rangle_{\Gamma} = \int_{\Gamma} (\alpha , \beta) \, d\mu_{\Gamma}$, where $d\mu_{\Gamma}$ is a volume element of Γ coming from g restricted to Γ . Suppose $k=\dim \mathscr{H}_p$, and let ψ_1,\ldots,ψ_k be an orthonormal basis of \mathscr{H}_p and ϕ_1,\ldots,ϕ_k be an orthonormal basis of $\mathscr{H}_p|_{\Gamma}$. Let $J:\mathscr{H}_p\to\mathscr{H}_p|_{\Gamma}$ denote the restriction map. Let $J(\psi_i)=a_{ij}\phi_j$ and let $A=(a_{ij})_{1\leq i,j\leq k}$. In this paper we extend the result of Burghelea et al. to arbitrary even dimensions and arbitrary p-forms. If M is a compact oriented Riemannian manifold of dimension d with d even and $E = \Lambda^p T^* M$, then **Theorem A.** $\operatorname{Det}(\Delta + \lambda, B) = \operatorname{Det}(\Delta + \lambda, B) \operatorname{Det} R(\lambda)$ for any $\lambda > 0$. **Theorem B.** $\operatorname{Det}^* \Delta = \frac{1}{(\det A)^2} \operatorname{Det}(\Delta, B) \operatorname{Det}^* R$. *Remark.* If p=0, then $E=M\times R$, and the matrix A is $(\frac{\sqrt{l}}{\sqrt{V}})$. Hence Theorem B reduces to $$Det^* \Delta = \frac{V}{l} Det(\Delta, B) Det^* R,$$ as stated in [BFK]. II. THE PROOF OF THEOREM A In [BFK], it is shown that $$Det(\Delta + \lambda) = c Det(\Delta + \lambda, B) \cdot Det R(\lambda),$$ and that $\log \operatorname{Det}(\Delta + \lambda)$, $\log \operatorname{Det}(\Delta + \lambda, B)$, and $\log \operatorname{Det} R(\lambda)$ admit asymptotic expansions; $$\begin{split} \log \mathrm{Det}(\Delta + \lambda) \,,\, \log \mathrm{Det}(\Delta + \lambda \,,\, B) &\sim \sum_{k=-d}^{\infty} \alpha_k |\lambda|^{-k/2} + \beta_0 \log |\lambda| \,, \qquad \text{with } \alpha_0 = 0 \,, \\ &\log \mathrm{Det}\, R(\lambda) \sim \sum_{j=-d}^{\infty} \pi_j |\lambda|^{-j/2} + \sum_{j=0}^d q_j |\lambda|^{j/2} \log |\lambda| \,, \qquad \text{with} \\ &\pi_0 = \sum_j \frac{\partial}{\partial s} \frac{1}{(2\pi)^{d-1}} \int_{R^{d-1}} J_{d-1}(s \,,\, \lambda \,;\, x) \varphi_j(x)|_{s=0} \, d\mathrm{vol}(x) \,, \end{split}$$ where $$J_{d-1} = (s, \lambda; x) = \frac{1}{2\pi i} \int_{R^{d-1}} d\xi \int_{\gamma} \mu^{-s} r_{-1-(d-1)} \left(\mu, \frac{\lambda}{|\lambda|}, x, \xi \right) d\mu,$$ $$r_{-1} = (\mu - p_1(\lambda, x, \xi))^{-1},$$ $$r_{-1-j} = -(\mu - p_1(\lambda, x, \xi))^{-1}$$ $$\cdot \sum_{k=0}^{j-1} \sum_{|\alpha|+l=j-k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} p_{1-l}(\lambda, x, \xi) D_{x}^{\alpha} r_{-1-k}(\mu, \lambda, x, \xi)$$ $\sigma(R(\lambda)) \sim p_1 + p_0 + p_{-1} + \cdots$ asymptotic symbol of $R(\lambda)$, $\{\varphi_j\}$ a partition of unity subordinate to coordinate charts, and γ is a curve on a complex plane enclosing all the eigenvalues of $R(\lambda)$ counterclockwise. Hence $$\log c = -\pi_0.$$ The proof of Theorem A reduces to the verification of the following equation: $$p_{1-j}(x, -\xi, \lambda) = (-1)^{j} p_{1-j}(x, \xi, \lambda).$$ Then $r_{-1-j}(\mu, \frac{\lambda}{|\lambda|}, x, -\xi) = (-1)^j r_{-1-j}(\mu, \frac{\lambda}{|\lambda|}, x, \xi)$, so when d is even, $r_{-1-(d-1)}(\mu, \frac{\lambda}{|\lambda|}, x, \xi)$ is odd with respect to ξ . So $J_{d-1} = 0$ and $\pi_0 = 0$. Therefore we conclude $$\operatorname{Det}(\Delta + \lambda) = \operatorname{Det}(\Delta + \lambda, B) \operatorname{Det} R(\lambda).$$ **Definition.** Let U be a collared neighborhood of Γ diffeomorphic to $\Gamma \times (-1,1)$ with diffeomorphism $\eta\colon U\to \Gamma\times (-1,1)$. Let $\Gamma_t=\eta^{-1}(\Gamma\times t)$, -1< t<1. Let N_t^+ , N_t^- be Neumann operators to each side with respect to $\Delta+\lambda$; i.e. if $\varphi\in C^\infty(\Gamma_t,\, E|_{\Gamma_t})$, define $N_t^+(\varphi)=\nabla_{\nu_t}u|_{\Gamma_t}$, where $(\Delta+\lambda)u=0$ in $M-\Gamma_t$, $u|_{\Gamma_t}=\varphi$, and ν_t is a normal vector field along Γ_t . Then $$R(\lambda) = -(N_0^+ + N_0^-).$$ **Lemma 1.** In a local coordinate system such that the first fundamental form looks like $$\begin{pmatrix} g_{ij}(x,t) & 0 \\ 0 & 1 \end{pmatrix}$$ on $\Gamma \times (-1, 1)$, the Laplacian is $\Delta = -\frac{d^2}{dt^2} + F(x, t) \frac{d}{dt} + \Delta_t$, where Δ_t is the Laplacian on Γ_t and F(x, t) is a C^{∞} -function valued $\binom{d}{p} \times \binom{d}{p}$ matrix. Then $$\frac{dN_t^+}{dt} = -(N_t^+)^2 + F(x, t)N_t^+ + (\Delta_t + \lambda),$$ $$\frac{dN_t^-}{dt} = (N_t^-)^2 + F(x, t)N_t^- - (\Delta_t + \lambda).$$ Remark. The idea to consider the Neumann operator as a solution of operator-valued differential equations goes back to I. M. Gel'fand. *Proof.* It is enough to show that the first statement is true. Let $\varphi \in C^{\infty}(\Gamma_t, E|_{\Gamma_t})$. Choose $u(x, t) \in C^{\infty}(M_{\Gamma_t}, E_{\Gamma_t})$ such that $(\Delta + \lambda)u(x, t) = 0$ on $M - \Gamma_t$ and $u(x, t)|_{\Gamma_t} = \varphi$. Then $$\frac{d}{dt}u(x, t) = N_t^+(u(x, t)), \frac{d^2}{dt^2}u(x, t) = \frac{d}{dt}(N_t^+(u(x, t))) = \frac{dN_t^+}{dt}(u(x, t)) + N_t^+\left(\frac{du}{dt}\right) = \left(\frac{dN_t^+}{dt} + (N_t^+)^2\right)u(x, t), \text{ and} \frac{d^2}{dt^2}u(x, t) = F(x, t)\frac{du}{dt} + (\Delta_t + \lambda)u(x, t) = (F(x, t)N_t^+ + \Delta_t + \lambda)u(x, t).$$ Hence $$\frac{dN_t^+}{dt} + (N_t^+)^2 = F(x, t)N_t^+ + (\Delta_t + \lambda)$$, so $$\frac{dN_t^+}{dt} = -(N_t^+)^2 + F(x, t)N_t^+ + (\Delta_t + \lambda).$$ Let $$\sigma(N_t^+) \sim \alpha_1 + \alpha_0 + \cdots + \alpha_{1-i} + \cdots ,$$ $$\sigma(N_t^-) \sim \beta_1 + \beta_0 + \cdots + \beta_{1-i} + \cdots ,$$ $$\sigma(\Delta + \lambda) \sim (\sigma_2 + \lambda) + \sigma_1 + \sigma_0.$$ Note that $$\sigma_2 + \lambda = \left(\sum_{ij=1}^{d-1} g^{ij} \xi_i \xi_j + \lambda\right) Id,$$ $$\sigma((N_t^+)^2) \sim \sum_{k=0}^{\infty} \sum_{\substack{|\omega|+i+j=k\\i,j>0}} \frac{1}{\omega!} d_{\xi}^{\omega} \alpha_{1-i} D_x^{\omega} \alpha_{1-j},$$ where ω is a multi-index and $D_x = \frac{1}{i} \frac{d}{dx}$. Since $\frac{dN_1^+}{dt}$, $\frac{dN_1^-}{dt}$ are first order operators, $-\alpha_1^2 + (\sigma_2 + \lambda) = 0$ and $\beta_1^2 - (\sigma_2 + \lambda) = 0$. So $$\alpha_1 = \beta_1 = \sqrt{\sum_{ij=1}^{d-1} g^{ij} \xi_i \xi_j + \lambda I d}$$ and $\alpha_1 + \beta_1 = 2\sqrt{\sum_{ij=1}^{d-1} g^{ij} \xi_i \xi_j + \lambda I d}$, which is even with respect to ξ . Note that $\frac{d\alpha_1}{dt} = -(2\alpha_0\alpha_1 + d_{\xi}\alpha_1 \cdot D_x\alpha_1) + F\alpha_1 + \sigma_1$ and $\frac{d\beta_1}{dt} = (2\beta_0\beta_1 + d_{\xi}\beta_1 \cdot D_x\beta_1) + F\beta_1 - \sigma_1$. Hence $$\alpha_0 = \frac{1}{2}\alpha_1^{-1}\left(-\frac{d\alpha_1}{dt} - d_{\xi}\alpha_1 \cdot D_x\alpha_1 + F\alpha_1 + \sigma_1\right),$$ $$\beta_0 = \frac{1}{2}\beta_1^{-1}\left(\frac{d\beta_1}{dt} - d_{\xi}\beta_1 \cdot D_x\beta_1 - F\beta_1 + \sigma_1\right).$$ Since $\alpha_1 = \beta_1$, it follows that $\alpha_0 + \beta_0 = \alpha_1^{-1}(d_{\xi}\alpha_1 \cdot D_x\alpha_1 + \sigma_1)$, which is odd with respect to ξ . **Theorem.** If $\sigma(R(\lambda)) \sim p_1 + p_0 + \cdots + p_{1-j} + \cdots$, then p_{1-k} , which is equal to $-\alpha_{1-k} - \beta_{1-k}$, is even (odd) with respect to ξ when k is even (odd). Proof. Note that one has $$\left\{ \begin{array}{l} \alpha_{1-k} = \frac{1}{2}\alpha_1^{-1} \left\{ -\frac{d\alpha_{1-(k-1)}}{dt} - \sum_{\substack{i+j+|\omega|=k\\0\leq i,\,j\leq k-1}} \frac{1}{\omega!} d_{\xi}^{\omega} \alpha_{1-i} D_{x}^{\omega} \alpha_{1-j} + F\alpha_{1-(k-1)} \right\}, \\ \beta_{1-k} = \frac{1}{2}\beta_1^{-1} \left\{ \frac{d\beta_{1-(k-1)}}{dt} - \sum_{\substack{i+j+|\omega|=k\\0\leq i,\,j\leq k-1}} \frac{1}{\omega!} d_{\xi}^{\omega} \beta_{1-i} D_{x}^{\omega} \beta_{1-j} - F\beta_{1-(k-1)} \right\}. \end{array} \right.$$ Since $\alpha_1 = \beta_1 = \sqrt{\sum_{ij=1}^{d-1} g^{ij} \xi_i \xi_j + \lambda} Id$, we can use (*) for each α_{1-i} , β_{1-j} to express α_{1-k} and β_{1-k} in terms of α_1 , α_1 , and α_0 . In fact, $$\alpha_{1-k} = \sum_{r} (-1)^{r} \frac{1}{2} \alpha_{1}^{-1} \frac{d}{dt} \left\{ \frac{1}{2} \alpha_{1}^{-1} \left\{ \frac{d}{dt} \cdots \frac{1}{2} \alpha_{1}^{-1} \left(\frac{d}{dt} q_{r}^{k-r} \right) \cdots \right\} \right\} + \sum_{s} (-1)^{s} \frac{1}{2} \alpha_{1}^{-1} F \left\{ \frac{1}{2} \alpha_{1}^{-1} \left\{ F \cdots \frac{1}{2} \alpha_{1}^{-1} (F \tilde{q}_{s}^{k-s}) \cdots \right\} \right\} + P_{k}$$ and $$\begin{split} \beta_{1-k} &= \sum_r (-1)^r \frac{1}{2} \alpha_1^{-1} \frac{d}{dt} \left\{ \frac{1}{2} \alpha_1^{-1} \left\{ \frac{d}{dt} \cdots \frac{1}{2} \alpha_1^{-1} \left(\frac{d}{dt} q_r^{k-r} \right) \cdots \right\} \right\} \\ &+ \sum_s (-1)^s \frac{1}{2} \alpha_1^{-1} F \left\{ \frac{1}{2} \alpha_1^{-1} \left\{ F \cdots \frac{1}{2} \alpha_1^{-1} (F \tilde{q}_s^{k-s}) \cdots \right\} \right\} + P_k \,, \end{split}$$ where $\frac{d}{dt}$ appears r times and F appears s times, respectively, and q_r^{k-r} , \tilde{q}_s^{k-s} , P_k are functions consisting of some jets of α_1 , α_1^{-1} , α_1 , and α_0 satisfying $$q_r^{k-r}(x, -\xi) = (-1)^{k-r} q_r^{k-r}(x, \xi),$$ $$\tilde{q}_s^{k-s}(x, -\xi) = (-1)^{k-s} \tilde{q}_s^{k-s}(x, \xi),$$ $$P_k(x, -\xi) = (-1)^k P_k(x, \xi).$$ Hence $$\begin{aligned} -p_{1-k} &= \alpha_{1-k} + \beta_{1-k} \\ &= 2 \sum_{r : \text{ even}} \frac{1}{2} \alpha^{-1} \frac{d}{dt} \left\{ \frac{1}{2} \alpha_1^{-1} \left\{ \frac{d}{dt} \cdots \frac{1}{2} \alpha_1^{-1} \left(\frac{d}{dt} q_r^{k-r} \right) \cdots \right\} \right\} \\ &+ 2 \sum_{s : \text{ even}} \frac{1}{2} \alpha_1^{-1} F \left\{ \frac{1}{2} \alpha_1^{-1} \left\{ F \cdots \frac{1}{2} \alpha_1^{-1} (F \tilde{q}_s^{k-s}) \cdots \right\} \right\} + 2 P_k , \end{aligned}$$ and so p_{1-k} is even if k is even, and p_{1-k} is odd if k is odd, with respect to ξ . ## III. THE PROOF OF THEOREM B **Lemma 2.** $R(\varepsilon)^{-1} = J \circ (\Delta + \varepsilon)^{-1} \circ (\cdot \otimes \delta_{\Gamma})$, where J is the restriction map to Γ and δ_{Γ} is the Dirac δ -function along Γ . *Proof.* For $\varphi \in C^{\infty}(\Gamma, E|_{\Gamma})$ choose u such that $(\Delta + \varepsilon)u = 0$ in $M - \Gamma$ and $u|_{\Gamma} = \varphi$. Then $$\frac{du}{dt} = \begin{cases} \nabla_{\nu_t} u = N_t^+(u(x, t)) & \text{for } t > 0, \\ -\nabla_{-\nu_t} u = -N_t^-(u(x, t)) & \text{for } t < 0. \end{cases}$$ Now $R(\varepsilon)\varphi = -N_0^+(\varphi) - N_0^-(\varphi)$. So $$\frac{du}{dt} = \begin{cases} -R(\varepsilon)\varphi + N_t^+(u(x,t)) + R(\varepsilon)\varphi, & t \ge 0, \\ -N_t^-(u(x,t)), & t < 0. \end{cases}$$ Let $$v(x, t) = \begin{cases} N_t^+(u(x, t)) + R(\varepsilon)\varphi, & t \ge 0, \\ -N_t^-(u(x, t)), & t < 0. \end{cases}$$ Then $$\frac{du}{dt} = -R(\varepsilon)(\varphi) \otimes H(t) + v(x, t).$$ For $t \geq 0$, $$\frac{dv}{dt}(x, t) = \frac{d}{dt}N_t^+(u(x, t)) = \left\{\frac{dN_t^+}{dt} + (N_t^+)^2\right\}u(x, t)$$ $$= (F(x, t)N_t^+ + \Delta_t + \varepsilon)u(x, t)$$ by Lemma 1. In the same way for t<0, $\frac{dv}{dt}=(-F(x\,,\,t)N_t^-+\Delta_t+\varepsilon)u(x\,,\,t)$. Hence $$\frac{d^2u}{dt^2} = -R(\varphi) \otimes \delta_{\Gamma} + \frac{dv}{dt}(x, t)$$ = $-R(\varphi) \otimes \delta_{\Gamma} + (F(x, t)N_t^+ + \Delta_t + \varepsilon)u(x, t),$ $$-\frac{d^2u}{dt^2} + (F(x, t)N_t^+ + \Delta_t + \varepsilon)u(x, t) = R(\varphi) \otimes \delta_{\Gamma},$$ $$(\Delta + \varepsilon)u = R(\varphi) \otimes \delta_{\Gamma}.$$ Hence $$R(\varepsilon)^{-1}(\varphi) = J \circ (\Delta + \varepsilon)^{-1} \circ (\varphi \otimes \delta_{\Gamma}).$$ **Theorem B.** $\operatorname{Det}^*(\Delta) = \frac{1}{(\det A)^2} \operatorname{Det}(\Delta, B) \cdot \operatorname{Det}^* R$. *Proof.* Let $k = \dim \mathcal{H}_p$. Then (1) $$\log \operatorname{Det}(\Delta + \varepsilon) = k \log \varepsilon + \log \operatorname{Det}^*(\Delta) + o(\varepsilon).$$ Denote by $\mu_j = \mu_j(\varepsilon)$ $(j \ge 1)$ the eigenvalues of $R(\varepsilon)$ with $0 < \mu_1(\varepsilon) \le \cdots \le \mu_k(\varepsilon) < \mu_{k+1}(\varepsilon) \le \cdots$. It is clear that $\lim_{\varepsilon \to 0} \mu_j(\varepsilon) = 0$ for $1 \le j \le k$. Then $$\log \operatorname{Det} R(\varepsilon) = \log \mu_1(\varepsilon) \cdots \mu_k(\varepsilon) + \log \operatorname{Det}^* R + o(\varepsilon).$$ Now we want to calculate $\mu_1(\varepsilon)\cdots\mu_k(\varepsilon)$. Let $\{\psi_j\}_{j\geq 1}$ be the complete orthonormal system of eigenforms of Δ with eigenvalue λ_j in $L^2(M,E)$. For any $\varphi\in C^\infty(\Gamma,E|_\Gamma)$, $\varphi\otimes\delta_\Gamma\in H^{-1}(M,E)$ and $(\Delta+\varepsilon)^{-1}(\varphi\otimes\delta_\Gamma)\in L^2(M,E)$. $$\langle (\Delta + \varepsilon)^{-1} (\varphi \otimes \delta_{\Gamma}), \psi_{j} \rangle = \langle \varphi \otimes \delta_{\Gamma}, (\Delta + \varepsilon)^{-1} \psi_{j} \rangle = \langle \varphi \otimes \delta_{\Gamma}, \frac{1}{\lambda_{j} + \varepsilon} \psi_{j} \rangle$$ $$= \frac{1}{\lambda_{j} + \varepsilon} \int_{\Gamma} (\varphi, \psi_{j}) d\mu_{\Gamma},$$ where $d\mu_{\Gamma}$ is a volume element in Γ . Hence $$(\Delta + \varepsilon)^{-1}(\varphi \otimes \delta_{\Gamma}) = \sum_{j=1}^{\infty} \frac{1}{\lambda_j + \varepsilon} \int_{\Gamma} (\varphi, \psi_j) \, d\mu_{\Gamma} \cdot \psi_j.$$ Let ψ_1, \ldots, ψ_k be harmonic forms and $\lambda_1 = \cdots = \lambda_k = 0$. Then $$(2) \quad R(\varepsilon)^{-1}\varphi = \frac{1}{\varepsilon} \sum_{i=1}^k \int_{\Gamma} (\varphi, \psi_i) \, d\mu_{\Gamma} \cdot \psi_i|_{\Gamma} + \sum_{j=k+1}^{\infty} \frac{1}{\lambda_j + \varepsilon} \int_{\Gamma} (\varphi, \psi_j) \, d\mu_{\Gamma} \cdot \psi_j|_{\Gamma}.$$ From (2), one can check that $R(\varepsilon)^{-1}$ is symmetric and positive definite; it follows that $R(\varepsilon)$ is also symmetric and positive definite. Let $\phi_1(\varepsilon), \ldots, \phi_k(\varepsilon)$ be orthonormal eigenforms of $R(\varepsilon)$ corresponding to eigenvalues $\mu_1(\varepsilon), \ldots, \mu_k(\varepsilon)$. Then $\phi_j(\varepsilon) \to \phi_j$ as $\varepsilon \to 0$, where ϕ_j is the restriction of a harmonic form to Γ with $\langle \phi_j, \phi_j \rangle_{\Gamma} = 1$. Let $a_{ij}(\varepsilon) = \langle \psi_i, \phi_j(\varepsilon) \rangle_{\Gamma}$, $1 \le i, j \le k$, and $A(\varepsilon) = (a_{ij}(\varepsilon))$. Now $\psi_i|_{\Gamma} = a_{ij}(\varepsilon)\phi_j(\varepsilon) + \tilde{\psi}_i(\varepsilon)|_{\Gamma}$ for some $\tilde{\psi}_i(\varepsilon)|_{\Gamma} \in (\operatorname{span}\{\phi_1(\varepsilon), \ldots, \phi_k(\varepsilon)\})^{\perp}$. Define $$I: C^{\infty}(\Gamma, E|_{\Gamma}) \to C^{\infty}(\Gamma, E|_{\Gamma})$$ by $$\varphi \mapsto \sum_{j=1}^k \int_{\Gamma} (\varphi \,,\, \psi_j) \, d\mu_{\Gamma} \cdot \psi_j|_{\Gamma} = \sum_{j=1}^k \langle \varphi \,,\, \psi_j \rangle_{\Gamma} \cdot \psi_j|_{\Gamma}.$$ Then $$\langle I(\phi_i(\varepsilon)), \phi_j(\varepsilon) \rangle_{\Gamma} = \sum_{l=1}^k a_{li}(\varepsilon) a_{lj}(\varepsilon) = ({}^t A A)_{ij}(\varepsilon).$$ Define $$G_{\varepsilon} \colon C^{\infty}(\Gamma, E|_{\Gamma}) \to C^{\infty}(\Gamma, E|_{\Gamma})$$ by $$\varphi \mapsto \sum_{j=k+1}^{\infty} \frac{1}{\lambda_j + \varepsilon} \langle \varphi, \psi_j \rangle_{\Gamma} \cdot \psi_j |_{\Gamma}.$$ Then $||G_{\varepsilon}||_{L^2}$ converges to $\frac{1}{\lambda_{k+1}} > 0$ as $\varepsilon \to 0$. Now $$R(\varepsilon)^{-1}(\varphi) = \frac{1}{\varepsilon}I(\varphi) + G_{\varepsilon}(\varphi).$$ For $1 \le j \le k$, $$\begin{split} \frac{1}{\mu_{j}(\varepsilon)} &= \langle R(\varepsilon)^{-1}\phi_{j}(\varepsilon), \, \phi_{j}(\varepsilon) \rangle \\ &= \frac{1}{\varepsilon} \langle I(\phi_{j}(\varepsilon)), \, \phi_{j}(\varepsilon) \rangle + \langle G_{\varepsilon}(\phi_{j}(\varepsilon)), \, \phi_{j}(\varepsilon) \rangle \\ &= \frac{1}{\varepsilon} ({}^{t}AA)_{jj}(\varepsilon) + N_{j}(\varepsilon), \end{split}$$ where $N_j(\varepsilon) = \langle G_{\varepsilon}(\phi_j(\varepsilon)), \phi_j(\varepsilon) \rangle_{\Gamma}$ is bounded as $\varepsilon \to 0$. For $i \neq j$, $1 \leq i, j \leq k$, $$0 = \langle R(\varepsilon)^{-1}(\phi_i(\varepsilon)), \phi_j(\varepsilon) \rangle$$ $$= \frac{1}{\varepsilon} \langle I(\phi_i(\varepsilon)), \phi_j(\varepsilon) \rangle + \langle G_{\varepsilon}(\phi_i(\varepsilon)), \phi_j(\varepsilon) \rangle$$ $$= \frac{1}{\varepsilon} ({}^t A A)_{ij}(\varepsilon) + \langle G_{\varepsilon}(\phi_i(\varepsilon)), \phi_j(\varepsilon) \rangle.$$ Since $({}^{t}AA)_{ij}(\varepsilon)$ and $\langle G_{\varepsilon}(\phi_{i}(\varepsilon)), \phi_{j}(\varepsilon) \rangle$ are bounded, $(tAA)_{ij}(\varepsilon) \to 0$ as $\varepsilon \to 0$. So $$\begin{split} \frac{1}{\mu_1(\varepsilon)\cdots\mu_k(\varepsilon)} &= \left(\frac{1}{\varepsilon}({}^tAA)_{11} + N_1(\varepsilon)\right)\cdots\left(\frac{1}{\varepsilon}({}^tAA)_{kk} + N_k(\varepsilon)\right) \\ &= \frac{1}{\varepsilon^k}(\det A)^2\left(\frac{({}^tAA)_{11}({}^tAA)_{22}\cdots({}^tAA)_{kk}}{(\det A)^2} + \varepsilon\cdot\frac{\widetilde{N}(\varepsilon)}{(\det A)^2}\right)\,, \end{split}$$ where $\widetilde{N}(\varepsilon)$ is bunded as $\varepsilon \to 0$. Hence (3) $$\log \operatorname{Det} R(\varepsilon) = k \log \varepsilon - \log(\det A)^2 + \log \operatorname{Det}^* R + o(\varepsilon).$$ If we combine equation (1) and equation (3), we get $$\log \operatorname{Det}^* \Delta = -\log(\det A)^2 + \log \operatorname{Det}^* R + \log \operatorname{Det}(\Delta, B).$$ # **ACKNOWLEDGEMENTS** I thank D. Burghelea for asking me to settle the questions answered by Theorems A and B in this paper. ### REFERENCES [BFK] D. Burghelea, L. Friedlander, and T. Kappeler, Mayer-Vietoris type formula for determinants of elliptic differential operators, J. Funct. Anal. 107 (1992), 34. DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210 E-mail address: ywlee@math.ohio-state.edu