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TRIANGULAR TRUNCATION AND NORMAL LIMITS
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Dedicated to the memory of Domingo Herrero, who dazzled us with his brilliance,

charmed us with his wit, and warmed us with his heart

Abstract. We show that, as n -» oo , the product of the norm of the triangular

truncation map on the n x n complex matrices with the distance from the norm-

one hermitian «x« matrices to the nilpotents converges to 1/2. We also include

an elementary proof of D. Herrero's characterization of the normal operators

that are norm limits of nilpotents.

Suppose zz is a positive integer and let Jin , ETn , jVn denote, respectively, the

sets of all zz x zz complex matrices, strictly upper triangular zz x zz matrices, and
nilpotent zz x zz matrices. There is a natural mapping x„ : Jin -*■ &ñ > namely,

x„(T) replaces the entries on or below the main diagonal of T with zeroes.
The map x„ is called triangular truncation on Jfn .

On an infinite-dimensional space, the triangular truncation mapping does not

always yield the matrix of a bounded operator. This is related to the fact that the
range of the mapping that sends a bounded harmonic function on the unit disk

to its analytic part is not included in H°° . For example, if f(z) = log(l - z),

then u = 2ilm(f) is bounded in modulus by n, but the analytic part of u,

namely /, is not bounded. In terms of Toeplitz operators, Tu is an operator

with norm n , but the upper triangular truncation of Tu is the formal matrix
for Tf, which is not a bounded operator. The matrix for Tu is the matrix

whose (i, z')-entry is 0 and (i, »-entry is l/(j - i) for 1 < i ^ j < oo. For

each positive integer zz, let TUy„ be the zz x zz upper-left-hand corner of Tu ,

i.e., the (z, z')-entry of Tu¡„ is 0, and the (i, »-entry of Tu„ is l/(j-i) for

1 < i # j <n . It follows that ||r„>n|| < n for each zz, and that ||T„(r„,„)|| -> oo
as zz —► oo. Hence ||t„|| -»oc as zz —> oo .

Much work has been done in determining ||r„||. S. Kwapien and A. Pelczyn-

ski [KP, pp. 45-48] proved in 1970 that ||t„|| = 0(log(zz)), K. Davidson [D,
p. 39] proved that ^ < liminf„_00 ||T„||/log(zz), and, in 1993, J. R. Angelos,
C. Cowen, and S. K. Narayan [ACN] proved that

lim ||T„||/l0g(«) = 1/7T.
n—»oo
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All three of the papers cited above made use of the matrices Tu t „ . It was shown

in [ACN] that ||TU„|| < n and, for zz > 2, ||T„(rM„)|| > log(zz) - 1, which

implies that ||t„|| > l2SKbi .

For each positive integer zz we define a number ô„ that measures how closely

nilpotent zz x zz matrices can approximate norm-one hermitian ones, namely,

on = inf{\\T- N\\: T £ Jt„ , N £ At, T = T*, ||T|| = 1}.

It follows from the work of D. Herrero [HI] that ôn —> 0 as zz —> oo, and it

was shown in [AFHV, Corollary A 1.12] that

*  > log(2)
On >

( 1.038) log(2) + log(zz) "

It was also pointed out in [AFHV] that W. Kahan [K] proved that

% + log(2)
S„<

21og(«)

In this note we show a direct connection between ô„ and x„ and prove

limn_00«5„||Tn|| = 1/2. We then show how the fact that S„ —> 0 can be used

to give an elementary proof of D. Herrero's theorem [HI] (Theorem 2 below),

characterizing normal limits of nilpotent operators.

Theorem 1.  lirrin^oo ¿„||t„|| = 1/2.

Proof. Let Nn = T„(Tu>n). Then

\\N„\\>log(n)-l   and   ||Im(AT„)|| = || -jiTu,H/2\\ < %ß.

Hence, || Re(A^„)|| > ||7V„|| - || \m(Nn)\ > log(zz) -l-n/2. Thus,

7t/2
^<ll(Arn-Re(/V„))/||Re(/V„)||||<

Hence

limsupr5„||T„|| < lim sup
n—»oo n—»oo

log(zz) - 1 - n/2 '

Xn\\      (n/2)log(n) In      1

log(zz) log(zz) - 1 - n/2     n 2     2

On the other hand, suppose A £ Jfn, N £ JV„, A = A*, ||y4|| = 1,

and \\A - N\\ = S„ . Then \\N\\ >l-S„, || lm(N)\\ = \\ lm(A - N)\\ < S„ .
Since N £ JK„ , we can assume, via unitary equivalence that N £ ¿7~n . Hence

T„(Im(A0) = N/2.
Hence,

l|Twll>||iV/2||/||Im(yV)||>(1~/")/2,
On

which implies that limin^^ocfJ^llT^II > liminfn_,oo(l -ân)/2 = 1/2.   D

Corollary,  lim^oo ô„ log(zz) = 7t/2.

We now show that lim„^oo à„ = 0 leads to an elementary proof of Her-

rero's theorem on normal limits of nilpotent operators. Here o(T) denotes the

spectrum of T.
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Theorem 2 (Herrero [HI]). Suppose T is a normal operator on a separable,

infinite-dimensional Hilbert space, o(T) is connected, and 0 £ o(T). Then T

is a norm-limit of nilpotent operators.

The converse of the above theorem is also true. If T is any operator that

is a limit of noninvertible operators, then 0 £ a(T), since the set of invertible

operators is open. The fact that a norm limit of nilpotent operators must have

connected spectrum uses the Riesz-Dunford functional calculus, namely, the

first result in D. Herrero's book [H2] on approximation.

Proposition 3 [H2, Theorem 1.1]. Suppose A is an operator and o(A) is the

disjoint union of compact subsets ao and ox, with ox nonempty. Suppose also

that Q is a bounded open set containing ox such that the closure ii~ is disjoint

from an. If B is any operator with \\B - A\\ < inf{||(z - A)~x \\~x : z £ dii},

then a(B) n Q ± 0.

Proof of Theorem 2. From the fact that ô„ —> 0, we know that there is a se-

quence {An} of norm-one hermitian matrices and a sequence {N„} of nilpotent

matrices such that \\An - N„\\ -+ 0. It follows that j|iV"„|| —> 1, and we conclude

that \\Al — N%\\ -» 0. Since \\An\\ = 1 and N% is nilpotent, we can assume
without loss of generality that 0 < A„ < 1.

We remarked above that a norm limit of nilpotent operators must have con-

nected spectrum. The An\ being finite matrices, cannot have connected spec-

trum; however, their spectra must try to fill out the interval [0, 1] as zz -» oo.

Lemma 4. For each t in [0, 1], dist(i, o(An)) < \\A„ - N„\\.

Proof. Suppose 0 < t < 1, and assume that t $ o(An). If we apply Proposi-

tion 3 with A = An , B = Nn , and Q the disk centered at 1 with radius 1 - t,
then the fact that a(N„) n Q = 0 and the fact that inf{||(z - ^)-1||-1 : z e
9Q} = dist(i, o(An)) implies the desired inequality.   D

We next show how the operator Mx , multiplication by the independent vari-

able x, on the space L2[0, 1] with Lebesgue measure is a norm limit of nilpo-
tents. Later, we will modify the argument to handle the general case.

Lemma 5. The operator Mx is a norm limit of nilpotent operators.

Proof. Let 0 < tn¡ < tni < ■ ■ ■ < t„k.n. = 1 be the distinct eigenvalues of A„.

Let An°°^, Ni00"1 denote, respectively, a direct sum of infinitely many copies of

An, N„ . Define f„ : [0, 1] —> [0, 1] to be the simple function taking the value

t„k on the interval [i„t_,, t„k) (where tn0 = 0).

It follows from Lemma 4 that ||x - fn(x)\\oo —► 0 ; whence \\Mfn - Mx\\ -> 0.

However, An°°^ and Mfn are both diagonalizable operators with eigenvalues

tnt, t„2, ... , tnk{n), each having infinite multiplicity.   Thus there is a unitary

operator U„ such that U'A^Un = Mfn, for each zz > 1. Hence

\\u;N¡r]uH - Mx\\ < {WIN™ - A^WnW

+ WU'A^Un - Mfn\\ + \\Mfn - Mx\\

= \\Nn-An\\ + \\Mfri-Mx\\^0   aszz->oo.
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Since U*Nn°°'Un is a nilpotent operator for every zz, we have proved that Mx

is a norm limit of nilpotent operators.   D

Lemma 6. If T is a normal operator, 0 £ o(T), and o(T) is connected, then

there is a sequence {pn} of polynomials vanishing at 0 and and a sequence {Wn}

of unitary operators with \\W*pn(Mx)Wn - T\\ -* 0.

Proof. Suppose e > 0, and let Q = {z + w: z £ o(T), |iii| < e}. Then

Q is open and connected; whence Cl is path-connected. Since o(T) is com-

pact, we can find a finite subset &~ = {X\,X2, ... , Xm} of o(T) with Xx = 0

such that every point in o(T) is within e of some point in y. It follows

from the spectral theorem that there is a diagonalizable operator D whose set

of eigenvalues is &, with each eigenvalue having infinite multiplicity, such

that \\T - D\\ < e. Since Q is path-connected, there is a continuous function
ip: [0, 1] -» Q such that ^(0) = 0 and the range of ip includes &~. Since

y/ is uniformly continuous on [0,1], there is a positive integer m such that

\\V - h\\oo < & where h is the simple function taking on the value y/(k/m) on

the interval [k/m, (k + l)/m), for 0 < k < m - 1. Hence

\\V,(MX) - h(Mx)\\ = \\M¥ - Mh\\ < e.

However, Mn is a diagonalizable operator, with each eigenvalue having infinite

multiplicity, and such that every point in y is within e of the set of eigenvalues

Mh.
It follows that every eigenvalue of D is within e of an eigenvalue of M„ , and

that each eigenvalue of Mn is within 2e of an eigenvalue of D. By rearranging

eigenvalues, we can find a unitary operator W such that \\W*MnW-D\\ < 2e .

Hence \\W*\p(Mx)W - D\\ < 3e. Since, by the Weierstrass approximation

theorem, ip is a uniform limit of polynomials on [0,1] (that vanish at 0

since y/ vanishes at 0), there is a polynomial p with p(0) - 0 such that

\\p - V\\oo < e . Hence,

\\W*p(Mx)W-T\\ < \\W*\p(Mx) - v(Mx]W\\

+ || W*\p(Mx)W - D\\ + \\D - T\\

< e + 3e + e = 5e.

This completes the proof of the lemma.   D

The proof of Theorem 2 is completed by noting that, since the set A of

nilpotent operators is closed under unitary equivalence and under evaluation

of polynomials that vanish at 0, the same is true for the norm closure A~ .

Since Mx £ A~ , it follows that, for every unitary operator W and for every

polynomial p with p(0) — 0, we have W*p(Mx)W £ A~ . The preceding
lemma clearly implies that A~ contains every normal operator whose spectrum

is connected and contains 0. This completes the proof of Theorem 2.
It follows from the proof of Lemma 1 that we could take

A^ = [7tT„(rM;n)/log(zz)]2   and   A„ = [Re(Nn)]2

in the proof of Theorem 2. This, modulo the problem of computing the eigen-

vectors and eigenvalues of A„ , gives a "concrete" construction of a sequence

of nilpotents that converge in norm to Mx on L2[0, 1].

The description of the closure of the set of all nilpotent operators on a

separable infinite-dimensional Hilbert space is a deep theorem of C. Apóstol,
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C. Foias, and D. Voiculescu [AFV]. A formula for the distance from an operator

to the set of nilpotent operators is contained in [AFHV, 12.7].

Acknowledgment

The author wishes to thank the National Science Foundation for its support

while this research was undertaken.

References

[ACN] J. R. Angelos, C C Cowen, and S. K. Narayan, Triangular truncation and finding the

norm of a Hadamard multiplier, Linear Algebra Appl. 170 (1992), 117-135.

[AFHV] C Apóstol, L. Fialkow, D. Herrero, and D. Voiculescu, Approximation of Hilbert space

operators, Vol. II, Pitman, Boston, 1984.

[AFV] C Apóstol, C. Foias, and D. Voiculescu, Norm limits of nilpotents, II, Rev. Roumaine

Math. Pures Appl. 19 (1974), 549-577.

[D] K. Davidson, Nest algebras, Pitman Res. Notes Math. Ser., no. 191, Longman Sei. Tech.,

Harlow, 1988.

[HI] D. A. Herrero, Normal limits of nilpotents operators, Indiana Univ. Math. J. 23 (1974),

1097-1108.

[H2]       _, Approximation of Hilbert space operators. I, Research Notes in Math., vol. 72,

Pitman, Boston, 1982.

[K] W. Kahan, Every n x n matrix Z  with real spectrum satisfies \\Z - Z*\\ < \\Z + Z*\\

{log2 n + 0.038} , Proc. Amer. Math. Soc. 39 (1973), 235-241.

[KP] S. Kwapien and A. Pelczynski, The main triangle projection in matrix spaces and its ap-
plication, Studia Math. 34 (1970), 43-68.

Department of Mathematics, University of New Hampshire, Durham, New Hampshire
03824

E-mail address: donilmath.unh.edu


