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ON A THEOREM OF HARTMAN AND WINTNER

P. W. MILLAR

(Communicated by Wei Y. Loh)

Abstract. An elementary stochastic process argument is given for a measure-

theoretic result of Hartman-Wintner, which asserts (under a natural condition)

that an infinitely divisible measure has no atoms iff its corresponding Levy

measure has infinite mass.

1. Introduction

Let p be an infinitely divisible measure on the line. The Lévy-Khinchine
representation asserts that Je'uxp(dx) has the form

(1.1) exp{y/(u)}

where

y(u) = iuy - a2u2 + Í leiux - 1 - ^^\v(dx)

with y £ R', a2 > 0, and v a sigma finite measure on R! such that v({0}) =

0, /_! x2v(dx) < oo, v{x: \x\ > 1} < oo. The measure v is called the Levy

measure.

In a seminal paper, Hartman and Wintner (1942) showed that, assuming

(T2=0,

(1.2) p has no atoms   iff    u(R') =+oo

(it is trivial that p has no atoms if a2 > 0). Seventeen years later, Blum

and Rosenblatt (1959) rediscovered this result. Direct proof of (1.2) using
the form of the characteristic function (1.1) appears difficult. Indeed, both

proofs mentioned above take an indirect route: it is first shown that an infinitely

divisible distribution is of "pure type"; then (1.2) is deduced at the end by

eliminating all of the other possible types.

On the other hand, for the study of processes with independent increments
("Levy processes"), the characterization given in (1.2) turns out to be quite use-
ful, appearing, for example, in the analysis of first exit times from an interval,

last exit times from a point, and so forth. Apparently, none of the other char-

acterizations of type in terms of the Levy measure have had any application in
stochastic process theory.
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Accordingly, it seems reasonable to give a direct proof of (1.2), accessible to

students of stochastic processes. The next section presents such a proof, based

on simple, purely sample-function-theoretic ideas. We emphasize that this proof

is not necessarily "better" or "more elementary" than the measure-theoretic

technique of Hartman-Wintner. Rather, it is just fascinating to see how a good

measure-theoretic result can be quickly derived by soft sample function analysis

and the drawing of a few pictures.

2. Main result

The proposition to be proved is:

Proposition. If a2 = 0, then p has no atoms if and only if v(R!) = +00.

To prove this, we shall use elementary facts from the theory of Levy processes,

which can be found in Gikhman and Skorokhod (1969) and Breiman (1968),
for example.

Let Xx be a random variable with distribution p. Then there exists a Levy
process {X,, t > 0} whose characteristic functions are

(2.1) EeiuX,=e\r>{t\p(u)}.

This process can be constructed to have right continuous paths with left limits.

The role of the Levy measure v can be partially understood in light of the

following facts, which are immediate consequences of the construction of {Xt}

given, for example, in the references just cited:

(2.2) Facts, (a) If A is a set in R' lying a positive distance from 0, then

tu (A) is equal to the expected number of s,

s < t, for which Xs - Xs- £ A.

(b) {Xt} has, w.p.l, an infinite number of jumps in every time interval iff

u(R') = +oo.

Of course, (b) is easily deduced from (a); in turn (a) says that the expected

number of "jumps of size A " is tv(A).

As a final preliminary, recall that a compound Poisson process is a Levy

process with step function paths. The following elementary result may also be

found in the above references.

(2.3) Facts, (a) A Levy process Y = {Yt} is compound Poisson if and only if

E{expiuYt} = exvty/Y(u), where y/y(u) = J[e'uz - l]vY(dx) and uY(R') < 00.

(b) If a Levy process has paths that are flat in any interval, it must be C.P.

Indeed, part (a) is Theorem 1, p. 274 in Gikhman-Skorokhod. As for (b),
let Tg = inf{s > 0: Ys+U = Ys for 0 < u < 6}. Then Ts + ô is an optional
time and so therefore is L = lim^otTá + S]. L is the "time of the first flat

spot" in the paths of Y . By hypothesis, P{L < 00} > 0. By stationarity and
the strong Markov property, Y must have step function paths after L, and so

has step function paths starting from 0. Basic properties of optimal times (also

called "stopping times") can be found, for example, in Blumenthal and Getoor

(1968), Ch. I, Sec. 6; the strong Markov property is discussed in Ch. I, Sees.

7, 8. Note that the proof below requires only a much simpler version of 2.3(b):

if the paths are flat in [0, T)  (T > 0), then the process is C.P.
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We can now proceed with the proof.

Proof of Proposition. Part 1. Assume u(R') = -hoc; we must show p has no

atoms.

Assume on the contrary that p has an atom. Let {X't, t > 0} be a Levy

process with the same distribution as the process {X,} introduced in (2.1), but

independent of {Xt} . Let

(2.4) Yt = Xt- X[.

If Xx (i.e., p) has an atom somewhere, then of course Yx has an atom at 0.

Let

(2.5) a = P{Yx=0}>0.

By a maximal inequality of Levy (cf. Loève, 1977, p. 259)

(2.6) P \ sup Ys > o\ < 2P{YX > 0} = 1 - a.
lo<s<l J

The last equality in (2.6) follows from symmetry considerations:

1 = P{YX > 0} + P{YX < 0} + a = 2P{YX > 0} + a.

It follows from (2.6) that, with probability at least a, Ys remains at 0 or

below for all s, 0 < s < 1. This implies, of course, that for all arbitrarily small
initial time intervals, Ys remains non-positive with positive probability. More

formally, let As = {w: Ys(w) <0, s <ô}. Then

(2.7) limP{As} >a>0.
¿10

By the Blumenthal zero-one law (Blumenthal, 1957), it follows that

(2.8) limP{As} = l.
<5|0

Let T — inf{t > 0: X, > 0}. Then T is an optimal time and by (2.8),
P{T > 0} = 1. Thus, X, < 0 for 0 < t < T, where T > 0. That is, upon
starting at 0, every path of the process {Yt} immediately enters (-oo,0] for

a short but positive initial length of time.

On the other hand, the process Y is symmetrically distributed, so, upon

starting at 0 every path also immediately enters [0, +oo) for a short, but

positive, initial length of time.

Taking the last two sentences together, we see that Y, upon starting at 0,

must remain at 0 for an initial length of time. The facts (2.3) then show that Y

must be compound Poisson. On the other hand Y is just the symmetrization

of X, so its Levy measure vY is just

uY(A) = v(A) + v(-A).

Since Y is C.P., vY(R) < oo, and so v(R) < oo. This contradiction completes

the proof of Part 1.
Part 2, the converse. Assume p has no atoms. Then we must show that

u(R') = +oo.
This argument can proceed more or less as in Part 1. Assume on the con-

trary that the conclusion is false: u(R') < oo . The symmetrization Y of X,

described in Part 1, is then compound Poisson. Then Ti  has an atom at 0 ;
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this could not happen unless Xx had an atom. This contradiction completes
the proof.

Note added in proof

A different direct proof of non-atomicity has been given by Huff; the proof

is a Fourier analytic argument based upon results of random walk, whereas the

present approach is sample function analytic. See B. W. Huff, Random walks

and the continuity of infinitely divisible distributions, SIAM J. Appl. Math. 26

(1974), 372-375.
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