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e-ISOMETRIC EMBEDDINGS

SONGWEI QIAN

(Communicated by Dale Alspach)

Abstract. In this paper we study into e-isometries. We prove that if tp is

an «-isometry from LP(cïl , I. , /¿i) into 1/(02 > ̂ 2 > ßi) (for some p, 1 <

p < oo), then there is a linear operator T : 1/(0.2 , ^2 » Hi) *-* W'Cli, 0\, p.¡)

with ||r|| = l suchthat \\Toq>(f) -f\\ < 6« for each fe LP'ili, ¿,, Hi).
This forms a link between an into isometry result of Figiel and a surjective

e-isometry result of Gevirtz in the case of LP spaces.

1. Introduction

Let X and Y be real Banach spaces. For a fixed e > 0, a map cp : X h-> Y

is called an e-isometry if

|||.?(x)-<?(y)||-||.x-y||| <e   for all x, y e X.

In 1945, Hyers and Ulam [7] raised the following question:

Does there exist a constant M > 0 depending only on X and Y

with the following property: For each e > 0 and each surjective

e-isometry cp : X i-> Y there is an isometry O : X t-> Y with

||fl»(jt) - <P(x)|| < Me for each xeXI

In 1983, Gevirtz [5], based on a body of previous partial results extending

over 38 years, proved that the Hyers-Ulam question has a positive answer with
M = 5 independent of X and Y. (For history on this topic, see [3].) Note
that the assumption that the map tp be surjective is necessary (cf. [7]).

In 1967, Figiel [4] proved the following non-surjective substitute for the

Mazur-Ulam theorem [10]: for any isometry <P from X into Y with 0(0) = 0,

there is a linear operator T of norm one from späHQ>(X) onto X such that

T o <p is the identity on I. In light of Figiel's result, it is tempting to refor-

mulate the Hyers-Ulam e-isometry problem for into maps as:

Does there exist a constant M > 0 depending only on X and

Y with the following property: For each e > 0 and each into

(*)       e-isometry tp : X i-> Y with cp(0) = 0 there is a continuous

linear operator T from spantp(X) onto X such that

\\Toy(x)-x\\ < Me for each x e X?
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As the following example shows, however, such an e-isometry reformulation

is doomed in general.

Example 1. Fix e > 0. Let X be an uncomplemented subspace of some

separable Banach space Y. Let cpo be a 1-1 map from X onto B(Y), the

closed unit ball of Y, with cpo(0) = 0. Define a map tp : X ^ Y by
cp(x) = x + j • <po(x) for each x e X. Then tp is an e-isometry with <p(0) = 0
and with spâHç>(X) = Y.

Suppose that'there are an M > 0 and a continuous linear operator T from

spâHtp(X) onto X such that ||To <p(x) - x\\ < Me for each x e X. Then

||Tx + f T o cpo(x) - x\\ < Me and hence \\T(nx) - nx\\ < Me + \\\T\\ for
each x in X and each positive integer n . Dividing by n and letting n —> oo

yields that Tx = x for each x e X. It follows that T is a continuous linear

projection from Y onto X, which is impossible by choice of X.

Observe that cp - cpo is linear in the above example and hence is nicely be-

haved, while tpo itself is uncontrolled. As we shall see below, under a variety

of special conditions on X and Y, each into e-isometry may be decomposed

into a nicely behaved portion (corresponding to tp - cpo above) and one (corre-

sponding to cpo) whose deleterious effects may be successfully limited, leading
ultimately to a positive answer to (*) in such cases.

Throughout this paper, ^ always denotes a fixed nontrivial ultrafilter on the

set ¿A of positive integers. 9t denotes the real line.

Say that P : Y i-> Z is a CS projection (contractive surjective projection)

provided P is a linear projection of norm one from Y onto the subspace Z

of Y.

2. Preliminaries

We first start with a generalization of a result of Figiel [4] which gives an

affirmative answer to the question (*) raised in §1 when the domain is one

dimensional.

Lemma 2. If cp : ÍH .-> Y is an into e-isometry with ç>(0) = 0, then there is an

F eY* with \\F\\ = 1 such that

\Fotp(t) -t\ < 5e   for each teW..

Proof. We follow Figiel's idea. Let n be a positive integer. The Hahn-Banach

theorem guarantees the existence of an Fn e Y* with ||F„|| = 1 such that

Fn((p(n) - (p(-n)) = \\tp(n) - <p(-n)\\.

For every f e [-n, n],

2n + 2e> \\<p(t) - <p(-n)\\ + \\<p(n) - <p(t)\\

>Fn(tp(t)-cp(-n)) + \\tp(n)-cp(t)\\

> Fn(cp(t) - cp(-n)) + Fn(cp(n) - <p(t))

= Fn(cp(n) - cp(-n)) = \\cp(n) - cp(-n)\\ >2n-e.

It follows that

(1) t + n-4e<Fn(tp(t)-tp(-n))<t + n + e.
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When t = 0, (1) becomes n - 4e < Fn(-cp(-n)) < n + e, and thus the general

form of ( 1 ) may be written

(2) i-5e < Fn(cp(t)) < t + 5e   for each t e [-«,«].

Let x = ¿J¡=1 aitp(ti) e spancpCR) and m = max{|í;| : 1 < i < k}. If n > m,

then from (2)

k k

- £ \a¡\(m + 5e) < Fn(x) < ^ \a¡\(m + 5e).
i=l t=l

Therefore for each fixed x e span rp(ÍH) , {F„(x)}^i, is bounded. It follows that

T(x) = lin% Fn(x) exists for each x e span tp(W) , and F is a linear functional

defined on span^(ÍK) with ||F|| = 1 . Moreover, for each t e 9í,

/-5e <F(cp(t)) <t + 5e.

Thus any norm-preserving extension F e Y* of F has the properties:

(i) ||F|| = 1 ; and
(ii) |F o <p(t) - t\ < 5e for each t e ÍH.

This completes the proof.

One candidate isometric approximation of a given e-isometry is the ultrafilter

limit of that e-isometry as defined below.

Definition 3. Given a map cp : X >-+ Y and a subsequence {k(n)} of {«},

define a map @ : X >-> Y provided the following limit exists for each x e X:

.. .     ..    tp(k(n)x)    .        , v
cp(x) = hm     , ; .       for each x e X.

%     k(n)

(Note that the possible dependence of 0 on {k(n)} is suppressed. This will

never cause confusion in the sequel.)

Property (Q) defined below is the key to controlling the "badly behaved" part

of an into e-isometry.

Definition 4. Let cp : X >-» Y be a map. Then tp has Property (Q) provided

(i) p(0) = 0;
(ii) there is a fixed subsequence {k(n)} of {«} such that cp : X t-+ Y as

defined in Definition 3 exists; and

(iii) if we let Z = spâHcp(X), then there is a CS projection Pz : Y >-+ Z .

3. Main results

There are several choices for X and Y for which a positive answer to the

question (*) stated in §1 is obtained. Each is a consequence of the following
theorem.

Theorem 5. Let Y be a smooth Banach space.  Let cp : X ^ Y be an into

e-isometry with Property (Q). Set Z = span0(X), and denote by Pz : Y i-+ Z
the associated CS projection guaranteed by Property (Q). Suppose further that

there is a closed linear subspace X' c Z with the following properties:

(i) There is a CS projection Px> : Z i-> X' ; and

(ii) X' is linearly isometric to X under the map Px' ° <p ■
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Then there is a linear operator T : Y -—> X with \\T\\ = 1 such that

\\Tof(x) - x\\ < 6e  for each xeX.

Proof. If X is one dimensional, Lemma 2 provides an even stronger conclusion

under weaker hypotheses.  Thus assume dim X > 2 in the remainder of the
proof.

Let U = Px' ° <p ■ Thus U : X i-+ X' is a linear isometry by assumption.
Let (X')L = (I- PX')(Z) and Zx = (/ - PZ)(Y). Then Z = X' © (*')x and
F = .Y'©(X/)X©Z-L = Z©Z-L. Thus it is possible to uniquely decompose cp as
<p(x) = cpx'(x) + cp(X,)±. (x) + cpz± (x) for each x e X. Note that Range(0) c Z

guarantees that tpzA = 0, and hence cp = ¿px* + Çf^-L. Moreover, Í/ = ¡^ by

the definition of U. It will be shown below that

(3) \\<Px'(x)-U(x)\\<6e   for each x e X.

Once done, the proof of Theorem 5 is direct. Indeed, assuming (3), let T =

U~x o Px, o Pz . Then \\T\\ = 1 and for each xeX,

\\T o tp(x) -x\\ = \\U~X o Px, o Pz o<p(x) - x\\

= \\PX, o Pz o cp(x) - U(x)\\ = \\cpx,(x) - U(x)\\ < 6e,

which establishes the theorem. The remainder of the argument is given to a

proof of (3).
Define ip : X' .-* Y by y/(y) = <p(U~x(y)) for each y e X'. Since U is an

isometry, y/ is an e-isometry. Set \px> = Px'°Pz°W » W(x')1- = (I-Px')°Pz°W ,

and y/(z)±. = (I - Pz) ° ¥ ■ Then both y/ = ipx* + '/'(A'')-1- + Vz-1 ä^ ^ -

tpx' + y/ffc)1- • Moreover, from the definition of y/ it follows that yAjA* = id^'.

Fix x e X and let y = U(x). If y = ^»(y), then obviously \\y- ipx'(y)\\ <
6e . The work comes in establishing this same inequality when y ^ ipx'(y) and

it helps to define z in this case by z = (y - ipx'(y))/\\y - ¥x'(y)\\ ■
It follows from Lemma 2 that there is an F e Y* such that ||F|| = 1 and

(4) \F oy/(tz)-t\<5e   for each íeíH.

Hence F o y/(tz) = t for each t e 9K. Now write

ip(tz) = \pX'(tz) + \pix~r)x(tz) = tz + y/[xA)^(tz)

for each / € ÍH. Let G e (span{z} 0 (X')1- 6 ZL)* be defined by

G(sz + z2) = s   for each s e ÍH and z2 e (X1)-1 e Z-1.

Then ||G|| = 1 and G o y/(z) = 1. Since y/(z) is a smooth point in Y, we

have F = G on span{z} © (Ar')x © Zx . In particular, then, F(z) = 1 and

(X')1- ®ZLQ F~x (0). By (4), for each t e ÍR,

|F o \px, (tz) -t\ = \Fo ipx' (tz) + F o ip(x>)± (tz) + F o y/z±. (tz) - t\

= \Foy/(tz)~t\ < 5e.

In the rest of the proof, we make use of some ideas in [6]. Choose u e
F~x(0) r\X' with ||u|| = 1 such that {y, y/x-(y)} C span{z, u) . Hence, there

exist numbers ß and y such that y/x'(y) = ßz + yu. Thus

\\tz - y\\ > \W(tz) - \p(y)\\ -e>Fo Px,(\p(tz) - y/(y)) - e

(5) = F o y/x>(tz) - F o y/Xt(y) - e > t - 5e - ß - e

= t - ß - 6e.
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Let a = \\y - y/x>(y)\\ + ß . Then y = az + yu. Since z is a smooth point with
support functional F, || • || is Gateaux differentiable at z with the Gateaux

derivative F . Thus ||z + tu\\ = 1 + o(t) as t —> 0. Hence,

(6) \\tz-y\\ = \\tz-az-yu\\ = (t-a) + o(l)   asi->oo.

Combining (5) and (6) gives

(7) a - ß < 6e.

Because z = (y - Wx'(y))l\\y - Wx'(y)\\ and F(z) = 1, it follows that

F(y) - F o y/x,(y) = \\y - y/X'(y)\\ ■

But from the description of \pX' (y) and y in terms of z and u it is immediate
that

F(y)-Foy/x,(y) = a-ß.

Hence (7) implies that

\\y-vx'(y)\\ <6e.

That is,

\\U(x)-tpx,(x)\\<6e,

as was to be shown. This completes the proof.

The following theorem is an immediate consequence of Theorem 5.

Theorem 6. Let Y be strictly convex and smooth. Suppose that cp : X i-» Y

is an into e-isometry satisfying Property (Q). Then there is a continuous linear

operator T from Y onto X such that \\T\\ = 1 and

\\Totp(x) -x\\ < 6e   for each x e X.

Proof. Note that (¿à is a linear isometry since Y is strictly convex. Hence
Z = spañ^(X) = <p(X). Now the identity map idz : Z >-* Z plays the role of
Px' in Theorem 5, which may be applied directly to complete the proof.

Specializing Theorem 6 to the LP spaces leads to the next result.

Theorem 7. Let (Q,, E,, pi), i = 1,2, be any two measure spaces, and fix

p, 1 < p < oo. Assume that cp is an e-isometry of LP (Six, Xi, Pi) into
LP('Al2, X2, p2) with cp(0) = 0. Then there is a continuous linear operator

T : LP(il2, S2, Pi) •-» ̂ (.Qi ,^i,Pi) with \\T\\ = 1 such that

||To cp(x) - x\\ < 6e   for each x e Lp(Qi ,I.x,pi).

Proof. First we need to recall the following two results:

(I) [8, p. 162] Let (ßi, Zi, px) and (Q2, Z2, p2) be measure spaces and
1 < p < oo . Suppose that F is a closed subspace of 1/(^2.. %2. H2)

which is linearly isometric to Lp(Clx, Xi, px). Then there is a CS pro-
jection of LP(Çl2, X2 > Pi) onto Y.

(II) (Bourgin [2]) Fix p, 1 < p < 00, and let cp be an e-isometry of X into
LP(n,l,p) with tp(0) = 0. Then y(x) = limn^O0cp(2nx)/2n exists

for each x e X and ç is a linear isometry. (The special case p = 2
was established by Hyers and Ulam [7].)
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By (I) and (II) above, cp(x) = lim^oo tp(2"x)/2n exists for each jc e

Lp(Çl\, X», px), and q>(Lp(Çl\, Xi, px)) is the range of a CS projection on

LP(Q2, X2, p2) ■ Hence the theorem follows from Theorem 6.

The next theorem is concerned with e-isometries whose ranges are Hilbert

spaces.

Theorem 8. Let ßA be a Hilbert space and X any Banach space. Let cp : X i-+

%A be an into e-isometry with cp(0) = 0. Then there is a continuous linear

operator T : %A ¡-i X with ||F|| = 1 such that

|| F o cp(x) - x|| < 6e   for each x e X.

The last result involves e-isometries with Property (Q) whose ranges have the

RNP.

Theorem 9. Let X and Y be Banach spaces with X separable and Y both

smooth and with the RNP. Suppose that tp : X •-> Y is an into e-isometry

satisfying property (Q). Then there is a linear operator T : X t-> F with \\T\\ = 1
such that

\\T o tp(x) - x\\ < 6e   for each x e X.

Proof. The map cp is an isometry of X into Y. By Figiel's theorem [4], there

is a norm-one linear operator T : Z = spâïï(?(X) i-> X such that T o cp = idx .
Since Y has the RNP and X is separable, the operator Dtp (a) exists for some

a e X ([9] or [1]). Then Dcp(a) is a linear isometry of X onto the subspace

X' = [Dtp(a)](X) c Y. Define Px< = Dq>(a) o T. Then F> is a CS projection
of Z onto X' and Px> ° cp = Dcp(a). Thus an application of Theorem 5

completes the proof.

Remark 10. Separability of X guarantees that cp is Gateaux differentiable at

some point in X. It is unknown whether the theorem remains true without

separability of X.
Not surprisingly, when finite-dimensional Banach spaces were considered,

correspondingly stronger results may be established. Indeed, let F be a finite-

dimensional Banach space and cp : X >-> Y an into e-isometry. Then cp(x) =

X\m% 1A^1 exists for each x e X. As a consequence of this observation, the

following result is a special case of Theorem 9.

Corollary 11. Let Y be a smooth finite-dimensional Banach space. Suppose that

cp : X h-> Y is an into e-isometry with g>(0) = 0 for which there is a CS projection

of Y onto span cp(X). Then there is a linear operator T : X i-> Y with || F|| = 1

such that

|| F o cp(x) - x\\ < 6e   for each x e X.
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