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e-ISOMETRIC EMBEDDINGS
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(Communicated by Dale Alspach)

ABSTRACT. In this paper we study into é-isometries. We prove that if ¢ is
an e-isometry from LP(Q;, X;, u;) into LP(Q,, Z,, uy) (for some p, 1 <
D < 00) , then there is a linear operator T : LP(Q;, Xy, uy) — LP(Qy, 0y, u)
with |T|| =1 suchthat [|[Tog(f)— f|| < 6e foreach fe€ LP(Q;, 3, u1).
This forms a link between an into isometry result of Figiel and a surjective
e-isometry result of Gevirtz in the case of LP spaces.

1. INTRODUCTION

Let X and Y be real Banach spaces. For a fixed ¢ >0,amap ¢ : X —» Y
is called an e-isometry if

llp(x) —eWI - lx—yl[<e forallx,yeX.
In 1945, Hyers and Ulam (7] raised the following question:

Does there exist a constant M > 0 dependingonlyon X and Y
with the following property: For each ¢ > 0 and each surjective
e-isometry ¢ : X — Y there is an isometry ® : X — Y with
llo(x) — ®(x)|| < Me for each x € X ?

In 1983, Gevirtz [5], based on a body of previous partial results extending
over 38 years, proved that the Hyers-Ulam question has a positive answer with
M =5 independent of X and Y. (For history on this topic, see [3].) Note
that the assumption that the map ¢ be surjective is necessary (cf. [7]).

In 1967, Figiel [4] proved the following non-surjective substitute for the
Mazur-Ulam theorem [10]: for any isometry ® from X into Y with ®(0) =0,
there is a linear operator T of norm one from span®(X) onto X such that
T o @ is the identity on X . In light of Figiel’s result, it is tempting to refor-
mulate the Hyers-Ulam é-isometry problem for into maps as:

Does there exist a constant M > 0 depending only on X and

Y with the following property: For each ¢ > 0 and each into
(%) e-isometry ¢ : X — Y with ¢(0) = 0 there is a continuous

linear operator 7 from Spang(X) onto X such that

1T op(x)—x|| < Me for each x € X ?
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As the following example shows, however, such an &-isometry reformulation
is doomed in general.

Example 1. Fix ¢ > 0. Let X be an uncomplemented subspace of some
separable Banach space Y. Let ¢ be a 1-1 map from X onto B(Y), the
closed unit ball of Y, with ¢o(0) = 0. Define a map ¢ : X —» Y by
@(x) =x+ % -9po(x) for each x € X. Then ¢ is an e-isometry with ¢(0) =0
and with spang(X)=7Y .

Suppose that-there are an M > 0 and a continuous linear operator T from
spang(X) onto X such that |T o ¢(x) — x|| < Me for each x € X. Then
ITx + £T o po(x) — x|| < Me and hence ||T(nx) — nx| < Me + §||T|| for
each x in X and each positive integer n. Dividing by n and letting n — oo
yields that Tx = x for each x € X. It follows that T is a continuous linear
projection from Y onto X, which is impossible by choice of X .

Observe that ¢ — ¢¢ is linear in the above example and hence is nicely be-
haved, while ¢, itself is uncontrolled. As we shall see below, under a variety
of special conditions on X and Y, each into &-isometry may be decomposed
into a nicely behaved portion (corresponding to ¢ — ¢y above) and one (corre-
sponding to @) whose deleterious effects may be successfully limited, leading
ultimately to a positive answer to () in such cases.

Throughout this paper, Z always denotes a fixed nontrivial ultrafilter on the
set .4 of positive integers. R denotes the real line.

Say that P : Y — Z is a CS projection (contractive surjective projection)
provided P is a linear projection of norm one from Y onto the subspace Z
of Y.

2. PRELIMINARIES

We first start with a generalization of a result of Figiel [4] which gives an
affirmative answer to the question (x) raised in §1 when the domain is one
dimensional.

Lemma 2. If ¢ : R~ Y is an into e-isometry with ¢(0) = 0, then there is an
F € Y* with |F|| =1 such that

|Fog(t)—t| <5¢ foreachteR.

Proof. We follow Figiel’s idea. Let n be a positive integer. The Hahn-Banach
theorem guarantees the existence of an F, € Y* with |F,|| =1 such that

Fu(p(n) —o(=n)) = llo(n) — e(-n)]l.
For every t € [-n, n],
2n+2e 2 ||lo(1) — p(=n)|| + llp(n) — p(1)]|
> Fu(p(2) — o(=n)) + llo(n) — p(1)]]
> Fu(o(t) — o(—n)) + Fa(p(n) — 9(2))
= Fu(p(n) — ¢(=n)) = |lo(n) — p(-n)|| = 2n —¢.
It follows that

(1) t+n—4e < Fy(p(t)—9p(-n))<t+n+e.
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When ¢t =0, (1) becomes n — 4¢ < F,(—¢(—n)) < n+ ¢, and thus the general
form of (1) may be written

(2) t—5¢ < F,(p(t)) <t+5¢ foreachte[-n,n].

Let x = Zf.‘:l a;o(t;) € spanp(R) and m =max{|t;|: 1 <i<k}. If n>m,
then from (2)

k k
=Y lail(m + 5¢) < Fo(x) < Z |ai|(m + Se).
i=1 =
Therefore for each fixed x € span ¢(R), {F,(x)}32, is bounded. It follows that
F(x) = limy F,(x) exists for each x € span q)(‘ft) and F is a linear functional
defined on span ¢(R) with ||F|| = 1. Moreover, for each ¢ € R,

t—5¢ <F(p(t) <t+5¢.

Thus any norm-preserving extension F € Y* of F has the properties:
(1) IFl=1;and
(i1) |Fog(t)—t| < 5¢ for each t € R.

This completes the proof.

One candidate isometric approximation of a given e-isometry is the ultrafilter
limit of that e-isometry as defined below.

Definition 3. Given a map ¢ : X — Y and a subsequence {k(n)} of {n},
define a map ¢ : X — Y provided the following limit exists for each x € X :

o (k(n)x)
k(n)
(Note that the possible dependence of ¢ on {k(n)} is suppressed. This will

never cause confusion in the sequel.)

Property (Q) defined below is the key to controlling the “badly behaved” part
of an into ¢-isometry.

Definition 4. Let ¢ : X — Y be a map. Then ¢ has Property (Q) provided
(1) ¢(0)=0
(ii) there is a fixed subsequence {k(n)} of {n} such that ¢ : X — Y as
defined in Definition 3 exists; and
(iii) if we let Z = span¢(X), then there is a CS projection Pz :Y — Z .

$(x) = lgn for each x € X .

3. MAIN RESULTS

There are several choices for X and Y for which a positive answer to the
question (x) stated in §1 is obtained. Each is a consequence of the following
theorem.

Theorem 5. Let Y be a smooth Banach space. Let ¢ : X — Y be an into
e-isometry with Property (Q). Set Z = span¢(X), and denote by Pz : Y — Z
the associated CS projection guaranteed by Property (Q). Suppose further that
there is a closed linear subspace X' c Z with the following properties:

(i) There is a CS projection Px: : Z — X'; and

(ii) X’ is linearly isometric to X under the map Py o ¢ .




1800 SONGWEI QIAN

Then there is a linear operator T : Y — X with ||T| =1 such that

T o@(x)—x|| < 6e foreachxe X.
Proof. If X is one dimensional, Lemma 2 provides an even stronger conclusion
under weaker hypotheses. Thus assume dim X > 2 in the remainder of the
proof.

Let U =Py o¢. Thus U : X — X' is a linear isometry by assumption.
Let (X)X = —-Py/)(Z) and Z+ =(I - Pz)(Y). Then Z = X' & (X')* and
Y=XoX')*0Z+ =ZeZ*. Thusitis possible to uniquely decompose ¢ as
@(x) = @x:(x)+ @xH1(x) +@z.(x) for each x € X. Note that Range(¢) C Z
guarantees that ¢z1 =0, and hence ¢ = px' + ¢(x» . Moreover, U = px: by
the definition of U . It will be shown below that
(3) lex:(x) — U(x)|| < 6¢ foreach x € X.

Once done, the proof of Theorem 5 is direct. Indeed, assuming (3), let T =
U-!'oPyioPz. Then ||T|| =1 and for each x € X,
IT o p(x)— x|l = |U" o Px: o Pz o p(x) — x|
=||[Px: o Pz o p(x) - UX)|| = llox:(x) - U(x)|| < 6e,
which establishes the theorem. The remainder of the argument is given to a
proof of (3).

Define ¥ : X' = Y by w(y) = o(U"!(p)) for each y € X’. Since U is an
isometry, y isan g-isometry. Set yx = Px:oPzoy, Wxn1 = (I—Px:)oPzoy,
and yz)r = (I — Pz)oy. Then both ¥ = yx' + Yx)r + Yz and ¥ =
Vx' + Yx)- . Moreover, from the definition of v it follows that ¥y = idy .

Fix x € X andlet y =U(x). If y = yx/(y), then obviously ||y —wx ()| <
6¢ . The work comes in establishing this same inequality when y # wx'(y) and

it helps to define z in this case by z = (y — wx'(»))/Ily — wx- V)|l .
It follows from Lemma 2 that there is an F € Y* such that ||F|| =1 and

(4) - |Foy(tz)—t| < 5¢ foreachtefR.
Hence F o y(tz) =t for each ¢t € R. Now write
V(tz) = Px(tz) + Yixn+ (12) = tz + YL (t2)
for each 1 € ®. Let G € (span{z} ® (X')* & Z1)* be defined by
| G(sz+2z3)=s foreachse®Rand z;€ (X)) 0 Zt.
Then |G| =1 and Go y(z) = 1. Since Y¥(z) is a smooth point in Y, we
have F = G on span{z} & (X’)* @ Z+. In particular, then, F(z) = 1 and
(X")* ®Z+ C F~1(0). By (4), for each ¢ € R,
|Foyx(tz) —t| = |F oyx(¢2) + F o y(x1(t2) + F o yz.(tz) — 1]
=|Foy(tz)—t| < Se.
In the rest of the proof, we make use of some ideas in [6]. Choose u €

F~10)n X’ with |u|| = 1 such that {y, wx/(y)} C span{z, u}. Hence, there
exist numbers B and y such that yy/(y) = Bz + yu. Thus

ez =yl > llw(tz) —w)ll —& > FoPx(p(tz) —y(y) —¢
(5) =Foyy(tz)—~Foyx(y)—e>t-5¢—p—¢
=t—f —6e.
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Let a=|y—yx )|+ 8. Then y = az+yu. Since z is a smooth point with
support functional F, |-| is Gateaux differentiable at z with the Gateaux
derivative F. Thus ||z +tu||=1+o0(¢) as t — 0. Hence,

(6) ltz-yll=lltz-—az—yu|=(t-a)+0(l) ast— co.

Combining (5) and (6) gives

N a— B <6e.

Because z = (y — wx/(»))/|ly — wx:(¥)|| and F(z) =1, it follows that
Fy)-Foyx:(y) =y -wxO®l.

But from the description of yx/(y) and y in terms of z and u it is immediate
that

F(y)—Foyx(y)=a-§.
Hence (7) implies that
ly = wx )l < 6e.

That is,
1U(x) - ox(x)| < 6,

as was to be shown. This completes the proof.
The following theorem is an immediate consequence of Theorem 5.

Theorem 6. Let Y be strictly convex and smooth. Suppose that ¢ : X — Y
is an into e-isometry satisfying Property (Q). Then there is a continuous linear
operator T from Y onto X such that |T|| =1 and

ITop(x)—x|| <6e foreachxeX.

Proof. Note that y is a linear isometry since Y is strictly convex. Hence
Z =spang(X) = y(X). Now the identity map idz : Z — Z plays the role of
Px: in Theorem 5, which may be applied directly to complete the proof.

Specializing Theorem 6 to the L” spaces leads to the next result.

Theorem 7. Let (Q;,Z;, u;), i = 1,2, be any two measure spaces, and fix
D, 1 < p < oo. Assume that ¢ is an e-isometry of LP(Q,, X, u;) into
LP(Q;, X, uy) with 9(0) = 0. Then there is a continuous linear operator
T:LP(Q, 3, ua) — LP(Q, 21, u1) with |T|| =1 such that

|IT o p(x)— x|| < 6¢ for each x € LP(Qy, Xy, uy).
Proof. First we need to recall the following two results:

(I) [8, p. 162] Let (2, X;, 1) and (R, Z,, u3) be measure spaces and
1 < p < oo. Suppose that Y is a closed subspace of L?(Q,, X,, u3)
which is linearly isometric to L?(Q;, X,, u;). Then there is a CS pro-
jection of LP(Q,, Z,, uy) onto Y.

(II) (Bourgin [2]) Fix p, 1 <p < o0, andlet ¢ be an ¢-isometry of X into
L’(Q,Z, u) with ¢(0) = 0. Then ¢(x) = lim,_ ¢(2"x)/2" exists
for each x € X and ¢ is a linear isometry. (The special case p = 2
was established by Hyers and Ulam [7].)
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By (I) and (II) above, ¢(x) = lim,_ ¢(2"x)/2" exists for each x €
LP(Q, Xy, 1), and @G(LP(Q, X,, u;)) is the range of a CS projection on
LP(Q,, X,, 1) . Hence the theorem follows from Theorem 6.

The next theorem is concerned with e-isometries whose ranges are Hilbert
spaces.

Theorem 8. Let # be a Hilbert space and X any Banach space. Let ¢ : X —
# be an into e-isometry with ¢(0) = 0. Then there is a continuous linear
operator T : & — X with ||T| =1 such that

IT o p(x) — x|| < 6¢ foreach x € X .

The last result involves e-isometries with Property (Q) whose ranges have the
RNP.

Theorem 9. Let X and Y be Banach spaces with X separable and Y both
smooth and with the RNP. Suppose that ¢ : X — Y is an into e&-isometry
satisfying property (Q). Then there is a linear operator T : X — Y with ||T|| =1
such that

IT o p(x)— x|| < 6¢ foreach x e X.

Proof. The map ¢ is an isometry of X into Y . By Figiel’s theorem [4], there
is a norm-one linear operator 7 : Z = spang(X) — X such that T o¢ =idy.
Since Y has the RNP and X is separable, the operator D¢(a) exists for some
a € X ([9] or [1]). Then D¢(a) is a linear isometry of X onto the subspace
X' =[D¢(a)l(X) c Y. Define Py = Dg(a)o T . Then Px: is a CS projection
of Z onto X’ and Py o ¢ = D¢(a). Thus an application of Theorem 5
completes the proof.

Remark 10. Separability of X guarantees that ¢ is Gateaux differentiable at
some point in X . It is unknown whether the theorem remains true without
separability of X .

Not surprisingly, when finite-dimensional Banach spaces were considered,
correspondingly stronger results may be established. Indeed, let Y be a finite-
dimensional Banach space and ¢ : X — Y an into ¢-isometry. Then ¢(x) =
limg, 22X exists for each x € X. As a consequence of this observation, the
following result is a special case of Theorem 9.

Corollary 11. Let Y be a smooth finite-dimensional Banach space. Suppose that
¢ : X — Y isaninto e-isometry with ¢(0) = 0 for which there is a CS projection
of Y onto span ¢(X). Then there is a linear operator T : X — Y with ||T| =1
such that

IT o p(x)— x|| < 6¢ foreach x e X.
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