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NOETHERIAN SUBRINGS OF POWER SERIES RINGS

DAQING WAN

(Communicated by Wolmer Vasconcelos)

Abstract. Let R be a commutative noetherian ring with unit. It is shown that

certain subrings contained between the polynomial ring R[X] and the power

series ring i?[^][|T]] are also noetherian. These subrings naturally arise from

studying p-adic analytic variation of zeta functions over finite fields.

1. Introduction

Let P be a commutative noetherian ring with unit, and let R[X] =

R[XX, ■■■ , Xn] be the polynomial ring of «-variables over P. Hubert's basis
theorem asserts that R[X] is noetherian. Let P[X][[7]] = P[X][[rj, • • • , Ym]]
be the formal power series ring over the noetherian ring R[X]. It is well known

that P[X|[[y]] is also noetherian. Motivated by Dwork's p-adic theory, it is

of interest to study certain noetherian subrings which are contained between

R[X] and P[*][m].
Let Sk be the set of polynomials in R[X, Y] which are homogeneous in Y

of degree k. An element of the power series ring P[A"][[y]] can be written
uniquely in the form

oo

(1.1) f = Y,fk(X,Y),        fk(X,Y)£Sk.
k=0

In this expansion, there is no restriction on the size of the degree dk of fk(X, Y)

viewed as a polynomial in X. In Dwork's p-adic theory, one would want to

study certain / such that the degree function dk is bounded by another func-

tion in k. For this purpose, let X(x) be a non-negative increasing function

defined over the non-negative real numbers. Define a subset of P[^][[T]] as
follows:

oo

R[X ; Y, X] = {/ = £ fk | fk £ Sk , degx(fk) < Cf(X(k) + 1)},
/t=o

where C¡ is a constant depending only on /.  Equivalently, if X(x) is not
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identically zero, then

oo

R[X; Y, A] = {/ = £/* | fk e Sk, de%x(fk) < CfX(k) for k » 0}.
fc=0

It is clear that R[X ; Y, X] is an P[X]-module containing R[X]. Since X(x)

is increasing, we have the trivial inequality

X(x) + X(y)<2X(x + y).

This inequality immediately implies that the usual multiplication operation is

closed for the set R[X ; Y, X]. Thus, we have

Lemma 1.1. Let X(x) be a non-negative increasing function on the non-negative

real numbers M>o. Then R[X ; Y, X] is a ring, and hence an R[X]-algebra.

From the definition, one sees that R[X ; Y, X] depends only on the val-

ues of X(x) for large x. Furthermore, for any positive constant c, we have

R[X ; Y, cX] = R[X ; Y, X]. If we take X(x) = oo , then R[X ; Y, X] is the full
ring P[X|[[y]]. If we take X(x) to be a positive constant, then R[X; Y, X] is

the ring P[[y]][X]. If we take X(x) = x, then R[X ; Y, X] is the so-called over-

convergent subring of P[^][[y]] as studied in the theory of Dwork-Monsky-

Washnitzer [4]. In all of these cases, the ring R[X; Y, X] is known to be
noetherian. It is then natural to ask

Question 1.2. Is the ring R[X ; Y, X] always noetherian?

It was first proved by Fulton [2] that the above question has a positive answer

for certain X(x), including the power function X(x) = xr, where r > 1 is a

real number. In studying p-adic analytic variations of zeta functions and L-
functions (Dwork-Sperber [1] and Wan [5]), one is led to analytic functions with

logarithmic decay or exponential growth. In the notation here, this means that
we need to study elements in the ring R[X ; Y, X] with X(x) = erx for r > 0.

Our purpose in this note is to show that R[X ; Y, X] is noetherian for a
general class of functions X(x) (including the exponential function erx ). We

have

Theorem 1.3. Assume that there is another positive valued function p(x) > 1

such that for all sufficiently large x and y,

(1-2) X(x) + X(y)<X(x + y)<X(x)p(y).

Then R[X ; Y, X] is noetherian.

One checks that the exponential function X(x) = erx ( r > 0 ) satisfies in-

equality (1.2) for large x and y (for example, one can take p(y) = ery ). More

generally, the growth function X(x) — erx' ( r > 0 and 0 < 5 < 1 ) satisfies

inequality (1.2). We conclude that R[X ; Y, X] is noetherian for such X(x).
Inequality (1.2) shows that X(x) grows at least as fast as linear functions and

grows at most as fast as exponential functions. Thus, for the slower growing

function X(x) = xr ( 0 < r < 1 ) and the faster growing function X(x) - erx*

(r > 0 and s > 1 ), we do not know whether R[X; Y, X] is noetherian. In

fact, our feeling in these cases is somewhat negative.
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An alternative description of the ring R[X; Y, X] is as follows: Let X~x(x)

be the inverse function of X(x) (assume that the inverse function exists). Let

Rd be the subset of P[X][[y]] which are homogeneous in X of degree d. The

elements in Rd are not necessarily polynomials. For fd £ Rd , define ord y(fd)

to be the largest integer k such that fd £ YkR[X][[Y]], where Y is viewed as

the ideal generated by the Y¡. Then
oo

R[X ; Y, X] = {f =Y,fd \ fd £ Rd, ordY(fd) > X~x(Cfd) for d » 0}.
fc=0

2. Proof of Theorem 1.3

We may assume that X(x) is unbounded and p(x) > 1 for all x. If X(x)
satisfies (1.2) only for large x and v, then we can replace p(y) by a larger

function and redefine X(x) for small x to be a suitable linear function so that

X(x) satisfies (1.2) for all x > 0, y > 0 and furthermore X(0) = 0 and X(x) > 0
for x > 0. We can then normalize X(x) (multiply X(x) by a suitable constant)

so that X(x) > 1 for x > 1. As we noted in the introduction, this will not

change the ring R[X ; Y, X]. Our proof attempts to follow the proof as given
by Fulton [2] and keep careful track of the growth conditions. Instead of using

only graded rings, we also use bigraded rings. Thus, our proof combines the
lowest degree argument for the case of power series rings and the highest degree

argument for the case of polynomial rings (see Lang [3]).
Let Sdk be the polynomials in R[X, Y] which are homogeneous in X of

degree d and homogeneous in Y of degree k. One sees that Sd¡k is a free

P-module with the natural base of monomials in X and Y. Refining (1.1),

each / g P[X][[y]] has a unique representation

oo

f =   Z^   fd,k, fd,ktSd¡k.
d,k=0

Then
oo

R[X;Y,X] = {f=  £ fd,k\fd,keSdtk, fd>k = 0 if d>Cf(X(k)+l)}.
d,k=0

Recall the defining property for a ring to be noetherian: every ideal of the

ring is finitely generated or every ascending chain of ideals stops. Let X(x)

be a non-negative increasing function satisfying inequality (1.2) and the above

normalization. Let J be an ideal of the ring R[X ; Y, X]. We need to prove

that J is finitely generated.
For integers d, k > 0, let

Md,k = {fd,k e Sd<k :

id oo \

there exists an element    ^A^-l-     ^     /«,« J e 7},

\u=0 u>0,v>k+l J

where fu>v £ SUtV . Note that ¿Zu=ofu,k is the lowest degree part of f £ J

in terms of Y and fdk is the highest degree part of ¿ZÍ=ofu,k m terms of
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X. One checks that Su<vMd,k c Md+U>k+V . The polynomial ring R[X, Y] is
a bi-graded ring with respect to X and Y. The bi-homogeneous ideal A of

the noetherian ring P[X, Y] generated by all bi-graded pieces Mdk is finitely
generated. Thus, there are large integers Nx and N2 such that

N,    N2

1=0 ;=0

Comparing the bi-homogeous parts, we deduce that for u> Nx, v > N2,

JV,    N2

AU,V=   / _,  /   ̂ U-j,V-jMjJ.

1=0 ;=0

Now,

Su-i,v-jMij = Su-N¡ ,v-N2SNi-i,N2-j^Ii,j Çz Su-Nt ¡v-n2Mn¡,N2-

Thus,

Au,v Çz Su-N,,v-N2Mfi/¡ ,h2 Ç A/^^u Ç Au,v.

We deduce that

(2.1) MUiV = AU,V = Su-Ni,v-n2MNiiN2,        u>Nx,v>N2.

For each fixed integer 0 < d < Nx, the P[y]-module generated by the graded

pieces Mdtk ( k > 0) is also noetherian (this module is a submodule of the
noetherian P[y]-module Sd0R[Y] ). Thus, we can take a large integer N2(d)
such that

(2.2) Md<k = Sotk-Nl(d)MdiNúd),       k > N2(d).

Let N = max0<d<N](N2,N2(d)). Since Su,vSij = Su+iit)+j = $$%+{, it
follows from (2.1) and (2.2) that

(2.3) Mu>v=Su-NltV-NMNltN,        u>Nx,v>N.

(2.4) Mdjk = S0,k-NMd,N,        0<d<Nx, k>N.

For each fixed 0 < d < Nx (including d - Nx), choose a finite number of
elements of the following form from J indexed by i :

Q(d, i) = QN(d, i) +  Yl  Qk(d,i),
k>N+\

d

= Y,Qu,N(d,i)+   Y,  Qk(d,i)
u=0 k>N+\

where Qk(d, i) £ Sk, such that the leading terms Qd,NÍd, i) (lowest degree

in y and then highest degree in X ) generate Md N as P-module.

We now turn to the single grading defined with respect to Y and describe

similar properties. Recall that Sk is the set of polynomials in R[X, Y] which

are homogenous in Y of degree k (the degree of X is not counted). Let

oo

Mk = {fk | (fk + Y fv) e J,   fve Sv}.
v>k+\
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This is an P[X]-module. The homogeneous ideal of the noetherian ring
R[X, Y] generated by all the graded pieces Mk is finitely generated (the grad-
ing is now only with respect to Y ). Thus, we may assume that our integer N

is so large that

(2.5) Mk = Sk_NMN,       k>N.

For each fixed integer 0 < k < N, we choose a finite number of elements of

the following form from / indexed by ; :
oo

P(k,j) = Y,Pv(k,j) £J,       Pv(k,j) £ Sv,
v=k

such that the leading terms Pk(k, j) (the lowest degree term in Y ) generate

Mk as P[X]-module.

We claim that if k > N and fk - ¿Zu=ofu,k £ Mk, then there are finitely
many polynomials a(d, i) indexed by d and i suchthat

(2.6)
A = S fl(rf ' ')OJv(¿ ' 0 '        a(d ' ¿) e Sk-N »   degx(a(d, i)) < degx(fk) = r.

d,i

To prove the claim, we first assume that r > Nx. By (2.3), there are polynomials

a(N, i) £ Sk-N such that

(2.7) fr<k = Y,a(N,i)QN{tN(Nx,i),        degx(a(N, /)) < r- Nx.
i

Since Qn¡,n{N\ , i) (resp. frk ) is the highest degree part (in the variables X )

of the polynomial Qn(Nx , z) G MN (resp. fk £ Mk), it follows from (2.7) that
the polynomial fk - 2D;a(^' í)Qn(N , z) G Mk has its degree in X smaller
than r. Repeating this procedure, we may assume that r < Nx. Applying the

same method and using the Qv(d, i) for d < Nx, we conclude that the claim

is true.
We now prove that J is generated by the finitely many elements Q(d, i) and

P(k, j) in J . Let G £ J. By subtracting an P[^]-linear combination of the
P(k, j), we may assume that G = X^at G* > where Gk £ Sk . We need to find

finitely many elements h(d, i) = XÜtto^í^» 0 (nk(d, i) £ Sk ) and a constant

C such that G(X) = ¿ZdJh(d, i)Q(d, i) and degx(h(d, i)) < C(X(k) + 1)
for all k, i, d.

By equation (2.6), we can choose polynomials ho(d, i) £ So such that

GN = J2ho(d,i)QN(d,i).
i

Take a constant C so large that degx(ho(d, i)) < C for all d, z, and

dcgx(Qk(d, i)) < 2^]v)(^) + 0,    teèx(Gk) < -£ïjMk) + O

for all d, k, i.
Let fc > 1. Suppose that the /2«(rf, i) £ Sv have been found satisfying the

inequality degx(hv(d, i)) < C(X(v) + 1) for all v < k - 1 and

u

G^+H = YlL,^' Í)QN+u-v(d, i)
d, i t)=0



1686 DAQING WAN

for all u < k — 1. By equation (2.6), we can then choose hk(d, i) £ Sk so that

it-i

GN+k-J2J2hv(d, i)QN+k-v(d, z') = 5Z/zfc(i/, i)QN(d, i).
d,i v=0 d,i

Furthermore, by (2.6) the degree in X of hk(d, i) is bounded by

max ( degxGN+k,      max     { degx(hv(d, i)) + degx(QN+k_v(d, i))})
\ 0<v<k-\ ,d,i '

^{tW.Hu + jj^Wir+fc-.j + i)})

<max(c(X(k)+l),    max  {C(X(v) + I)+ ^-(X(k-v) + I)})
\ 0<v<k-\ 2 )

<max(c(X(k) + l),    max   {C(X(v) + I) + CX(k-v)})
V 0<v<k-l '

<C(X(k) + l),

where in the second inequality we used the conditions X(N+k) < X(k)p(N) and

p(N)> 1. The third inequality follows from our normalization that X(k-v) >

1 for all k - v > 1. By induction, we can then find the required h(d, z). Thus,

/ is a finitely generated ideal. The theorem is proved.
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