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LEVEL CROSSINGS OF A RANDOM POLYNOMIAL
WITH HYPERBOLIC ELEMENTS

K. FARAHMAND

(Communicated by Richard T. Durrett)

Abstract. This paper provides an asymptotic estimate for the expected num-

ber of AMevel crossings of a random hyperbolic polynomial gi cosh x +

g2 cosh 2x + ■ ■ ■ + g„ cosh nx , where g¡ (j = 1, 2,..., n) are independent

normally distributed random variables with mean zero, variance one and K is

any constant independent of x . It is shown that the result for K = 0 remains

valid as long as K = K„ = 0{s/n).

1. Introduction

Let (SI, A, Pr) be a fixed probability space and let {gj(co)}"=l be a se-

quence of independent identically distributed random variables defined on £2.
Although there has been considerable attention given to algebraic and trigono-

metric polynomials with coefficients g/s, very little is known about the be-
haviour of the random hyperbolic polynomial,

n

(LI) P(x) = Pn(x, co) = J2 gj(co) cosh jx.
7=1

Denote by NK(a, ß) the number of real roots of the equation P(x) = K in
the interval (a, ß) and by EN¡((a, ß) its expected value. The only literature

that this author could find concerning EN is a report by Bharucha-Reid and

Sambandham [1, p. 110] on an unpublished result of Das [4], where it is stated

that for K — 0 and independent normally distributed coefficients with mean

zero and variance one ENQ(-oo, oo) is asymptotic to (l/^)log«. This is

interesting as it shows that ENo for random hyperbolic polynomials does not

correspond with that of the random algebraic polynomial

n

(1.2) F(x) = F„(x, co) = J2gj(co)xj,
j=i
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nor with that of the random trigonometric polynomial

n

(1.3) T(x) = T„(x ,co) = ^2 gj(œ) C0*JX ■
i=x

From Kac [7] or Wilkins [10] we know that for the algebraic polynomial (1.2),

ENq(-oo, oo) ~ (2/^)log« is twice that of the hyperbolic case reported by

Bharucha-Reid and Sambandham [1], while for the trigonometric case (1.3),

ENQ(0, 2n) ~ (2n/v/3) (see Das [3] and Wilkins [9]). Therefore it is of spe-
cial interest to establish for the hyperbolic case which of the known patterns,

if any, ENK, for K ^ 0, will follow. One can expect that, because of the

similarity of order of EN0, the AMevel crossing would be similar to that of
the algebraic case. In Farahmand [6] it is shown that ENK for the equation

F(x) = K is asymptotically reduced to (l/7r)log(n/X2) in the interval (-1, 1)
while its remains the same as K = 0 in the interval (-00, 1) U (1, oo) as long

as K = Kn = 0(y/h~). For the trigonometric equation T(x) = K, however,

Farahmand [5] shows ENK(0, 2n) remains asymptotic to (2n/V3). Our re-

sult here unexpectedly shows that the AMevel crossing of the hyperbolic polyno-

mial is similar to that of the trigonometric one. If one classifies the oscillation
of different types of polynomials according to the behaviour of their real ze-

ros, viz. the algebraic types with ENo = 0(log«) and the trigonometric types

with ENo — O(n), it seems interesting to note that although random hyperbolic
polynomials will fall into the first category, their properties of ÄMevel crossings

follow the second. We prove the following:

Theorem. For any sequence of constants Kn=K suchthat {A^2/(«logn)} tends

to zero as n tends to infinity the mathematical expectation of the number of real
roots of the equation P(x) = K satisfies

ENK(-oo, oo) ~ (l/7t)log« .

2.  A FORMULA FOR THE EXPECTED NUMBER OF CROSSINGS

Let

<D(0 = (27t)~1/2 /    exp(-y2/2)¿/
J — OO

and

<p(t) = d<t>(t)/dt = (27T)-1/2 exp(-i2/2) ;

then by using the expected number of level crossings given by Cramer and
Leadbetter [2, p. 285] for our equation P(x) - K = 0 we can obtain

(2 EN(a, ß) = jß (B/A)(l - C2/A2B2)x/2y>(-K/A)

.[2<p(n) + n{2<S>(n)-l)]dx,
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where

n

(2.2) A2 = var{P(x) - K} = ^ cosh2 jx,

7=1

n

(2.3) B2 = var{P'(x)} = £ j2 sinh2 ;x,

7=1

(2.4) C = cov[{P(x) - /C"}, P'(x)] = ^ ;'sinh/x cosh/x,

and

?/ = -C7:/^(^2y52-C2)1/2.

Let A2 = A2B2 - C2 and erf(x) = /* exp(-i2) dt ; then from (2.1) we can
write the extension of a formula obtained by Kac [7] and Rice [8] for the case

of K = 0 as

(2.5) EN(a,ß) = Ii(a,ß) + I2(a,ß),

where

rß
(2.6) h(a,ß)=      (A/nA2)exp(-B2K2/2A2)dx

Ja

and

rß

(2.7) I2(a,ß)=      (V2/7i)KCA-3exp(-K2/2A2)eTf(KC/AA\/2)dx.
Ja

We remark that although we are interested in x € (-oo, oo) it is sufficient to

restrict our attention to the number of real roots for positive x only; since to
each root of P(x, co) = K in (0, oo) there corresponds a root of P(x, co) — K
in (-oo, 0), and conversely. Therefore EN(-oo, oo) = 2EN(0, oo). From

(2.2)-(2.4) we obtain the following relations:

(2.8) A2 = (2n - 1 )/4 + sinh(2« + 1 )x/4 sinh x,

B2 = -n(n+ l)(2n + l)/l2 + (2n+ l)2sinh(2n + l)x/16sinhx

(2.9) - (2n + 1 ) cosh(2« + 1 )x cosh x/8 sinh2 x

+ (2 cosh2 x/ sinh2 x - 1 ) sinh(2« + 1 )x/16 sinh x,

C = (2n + l)cosh(2« + l)x/8sinhx

- sinh(2« + 1 )x cosh x/8 sinh2 x,

and therefore

A2 = sinh2(2« + l)x/64sinh4x

+ (2n-l) sinh(2« + 1 )x( 1 + cosh2 x)/64 sinh3 x

(2.11) -(4n2- l)cosh(2n+ l)x cosh x/32 sinh2 x

+ (2« + 1 )(8«2 - 4n - 3) sinh(2n + 1 )x/192 sinh x

- (2« + l)2/64sinh2x - n(n + l)(4n2 - l)/48.

(2.10)
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3. Proof of the theorem

First we let x be the interval ((log«)1/2//?, 1). As it turns out this inter-

val will make the main contribution to the number of real roots. To find the

dominant terms in (2.2)-(2.4) we observe that in this interval

cothx < e/x < ¿«(log«) -1/2

and therefore the derivative of fn,P(x) = (sinhnx)(sinhx)-'' is positive for

p = 1, 2, 3, and for n sufficiently large. Hence

fn,P(x) > sinh{(logn)1/2}[sinh{(log«)1/2/«}]^

> sinh{(logn)1/2}[(n/4)(log/i)-'/2F.

Use has been made of the fact that sinhx < 4x in (0,1). Since (log«)1/2/«

is a decreasing function of « , (3.1) will remain valid for « replaced by 2« + 1.

Hence for all « > 49 and p = 1, 2, 3 from (3.1) we can obtain

(3.2) f2n+i,p(x) > («p/3.254)(log«)-^2exp{2(log«)1/2}.

Now from (2.8)—(2.11) and (3.2), for all sufficiently large « , and since sinhx >

x/4 in (0, 1) we can show

(3.3) A2 = [{sinh(2« + l)x}/4sinhx]{l + 0(log «)"'},

(3.4) B2 = [(2« + l)2{sinh(2« + l)x}/16sinhx]{l + 0(logn)~xl2},

(3.5) C = [(2« + l){cosh(2« + l)x}/8sinhx]{l + 0(log«)_1/2},

and

(3.6) A2B2 - C2 = [{sinh(2« + l)x}/8sinh2x]2{l + 0(logn)~{}.

In the following for « sufficiently large we evaluate 7i((log«)'/2/«, 1). To this

end from (2.6) and (3.3)-(3.6) we have

Ix((logn)x'2ln,l)

= (2n)-l[l + 0(log«)-']

•/ (cschx)exp{-2#2(2«+l)2sinh3x/
J(logn)'/2/„

(3.7) sinh(2« + l)x[l + 0(log«rI/2]}¿x

= (27r)-'[l + 0(log«)-'] / (cschx)<7x
J{logn)ll2/n

• 1

+ 0 K2(2n + l)2 f {sinh2x/sinh(2« + l)x}dx
J(\ognyi2ln/(logn)'/2/i

The first term appearing on the right-hand side of (3.7) can be evaluated as

(27T)-'[1 + 0(log«)-1]{log(tanh 1/2) - log[tanh{(log«)1/2/2«}]}

= (2nyx[l + 0(log«)-']{0(l) + ^{«(log«)-'/2}

-log[l + 0(«-2log«)]}

= (2^)-1{log/i-(l/2)log(logM) + 0(l)}.
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Now we show that the second term appearing on the right-hand side of (3.7)

is small compared with the value obtained in (3.8). To this end we write this

term as

O K2(2n + l)2 f {x2csch(2« + l)x}dx
7(logn)'/2/(«+l/2)

(3.9) = 0 K2(2n + l)
r2n+\

•/2(logn)|/2

csch udu

= 0[K2(2n + l)~1].

Therefore, since K = ¿»(«log«)1/2, from (3.7)—(3.9) we have (27t)-1 log n as

the asymptotic value for 7i((log«)'/2/«, 1). Now we show 7i(0, (log«)1/2/«)

is small compared with this asymptotic value. For this range of x the dominant
term for A2, B2 and C cannot be found. However, since from (2.8)

A2 > {sinh(2« + l)x}/4sinhx

and since u coth u is an increasing function of u we can have

(B2/A2)< «(« + l) + (l/2)cothx{cothx-(2«+ l)coth(2«+ l)x}

(3.10) - {«(« + 1)(2« + l)sinhx}/{3sinh(2« + l)x}

<«(« + l)<(«+l/2)2.

Therefore for x > 0 and for all « > 2 from (3.10) we can obtain

(3.11) (A/A2)<(B/A)<n + l/2.

Therefore from (2.6), (3.11) and for all sufficiently large « we can obtain

(3.12) h(0, (log«)'/2/«) = O((log«)'/2).

To estimate an upper limit for 72 we note that since C = (l/2)d(A2)/dx from
(2.7) we can write

(3.13)

/•OO

72(0, oo) < (27T)"1/2 /    \KC\A-3dx
Jo

= \K\(2n)-xl2 H
JnV

/»OO

,-1/2   /       A-2A-¿dA

= 0(K/nl/2).

Now it only remains to consider the case of x > 1 for 7i
(2.11) and for sufficiently large « we have

From (2.8) and

and

A2 < sinh2(2«+ l)x/16sinh4x

A2 > sinh(2« + l)x/4sinhx.

Therefore for all positive x,

(3.14) (A/^2)<cschx.

Hence from (2.6) and (3.14) we obtain

/oo
(A/A2) dx

/OO

cschxdx = (Ä)'log{coth(l/2)}.
(3.15)
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Finally from (3.8), (3.9), (3.12), (3.13), and (3.15) we have proof of the theo-
rem.

4. Remark

By looking at the proof it is apparent that although in the interval of (-1, 1)

the hyperbolic polynomial has asymptotically as many roots as the algebraic

polynomial, outside this interval, unlike the algebraic case, the hyperbolic poly-

nomial does not possess any sizeable roots. Perhaps this is caused by (expo-
nentially) fast increases (decreases) of the terms in (-oo, -1) u (1, oo) which
makes the cancellation in this type of polynomial difficult.
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