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CONTRACTIVE PROJECTIONS
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(Communicated by Dale Alspach)

Abstract. We prove that there are no 1-complemented subspaces of finite codi-

mension in separable rearrangement-invariant nonatomic function spaces not

isometric to L2 .

We study contractive projections onto finite-codimensional subspaces of real

nonatomic function spaces. In general such projections are not common. It is

well known that only in Hilbert space there exists a contractive projection onto

every subspace of fixed finite codimension (cf. [1]).

The study of contractive projections (and more general projections with min-

imal norm) is important in approximation theory (cf. the survey of Cheney and

Price [3]).
It is known that there are no 1-complemented subspaces of finite-codimension

in C[0, 1] (Wulbert [13]) and in Lx(p) if the measure p is nonatomic ([6,

Corollary IV. 1.15], [4]). De Figueiredo and Karlovitz [5] (1970) proved that if
p is nonatomic, then there are no 1-complemented hyperplanes in Lp(Çl, p),

1 < p < oo, p t¿ 2 (cf. also [2]).
In this paper we prove that in rearrangement-invariant nonatomic function

spaces not isometric to L2 there are no 1-complemented subspaces of any finite

codimension.

We use the terminology and notation as in [9].

Our method of proof is surprisingly simple—it is based on the following

observation:

Proposition 1 (cf. [7, 11]). In a real Banach space X if P is a projection, then

\\I - P\\ - 1 (where I denotes identity operator) if and only if x*(Px) > 0 for

all x £ X and x* £ X* normingfor x.

In [7, Theorem 4.3] (cf. [8, 10]) Kalton and the author proved the nonex-

istence of 1-complemented hyperplanes in a wide class of nonatomic function

spaces. However, the original theorem uses special technical phraseology, so we

state it below in the language of projections:
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Theorem 2. Suppose X is a real order-continuous Käthe function space on
(ft, p) and p is nonatomic. Then the hyperplane H in X is l-complemented

if and only if there exists a nonnegative measurable function co with suppiu =

B = supp/\ where f £ HL c X*, so that for any x e X with suppx c B

11*11 - ( / \x\2wdp)

Hence there are no l-complemented hyperplanes in X unless L2 is isometric

to a band in X. In particular, there are no l-complemented hyperplanes in

separable r.i. spaces on [0, 1] [7, Theorem 4.4].

As part of the proof of Theorem 2 we proved the following fact, which we

state separately for the future use.

Proposition 3 ([10, Proposition 2.8]). Let X be an order-continuous Köthe func-

tion space on (Q, p), where p is nonatomic. Suppose that the set

A=< — : x £ X, x* £ X* normingfor x >

is one-dimensional, i.e., A c {aw: a e K} for some w £ L0(Q, p). Then X is

isometric to L2(w dp).

Now we are ready to prove our main result.

Theorem 4. Suppose p is nonatomic and X is a separable r.i. space on

([0, 1], p) not isometric to L2. Then there are no l-complemented subspaces

of any finite codimension in X.

For the proof we need the following measure-theoretic lemma.

Lemma 5. Suppose p is nonatomic, and suppose f\ , ... , fn, gi, ■■• , gn £

Lx (p) are such that g\, ... , gn are linearly independent and

(1) j^(^jhfjdp}^jhgjdp^>0

whenever \h\ = 1 a.e. Then {fj}"=x c span{gj}"=i.

Proof. Consider the operator T: R2" -> Lx(p) defined by

n

T(ax ,bx,...,a„,b„) = Y^ a¡fi + biSi ■
i=i

To prove the lemma it is enough to show that the dimension of the range

of T is equal to zz, since fx ,...,/„ , gx, ... , gn are contained in the range

and g\, ... , gn are linearly independent. For that it is enough to show that

dim T*(Lqo(p)) < n. Notice that the operator T* is defined by T*h =
(jhfdp, Jhgxdp, ... , jhfndp, Jhg„dp) for h £ Lœ(p), and let T =
{T*h: \h\ = 1 a.e.}.

Clearly T*(Loo(p)) = spanT, and we immediately see that T = -T. Now

consider the R2"-valued measure p: p(A) = (JXAfidp, f XAgidp, ... ,
¡XAfndp, JXAgndp). By LiapunofTs theorem [12] the angle 3%(p) of p is
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convex and thus also T is convex (T = T*l - 23i(p)). Therefore inequality

(1) yields that

n

(2) ]£*/*/ > 0    for every (sx, tx, ..., s„, tn) £ T^L^p)).

7=1

To finish the proof consider V = spaniel-1 - e2k: k = I, ... , n} c R2n ,

where e¡ denotes the natural basis of K2" . By (2) V n T^L^p)) = {0} , so

dimr*(Loo(//)) <zz.   D

Proof of Theorem A. Suppose that F is a closed linear subspace of codimension

zz in X, and let ux, ... , u„ be linearly independent functions in X such

that span{F, ux,..., un} = X. Denote P: X —> F a contractive projection

onto F, and consider Q = I - P. Then Q = Y^"j=i fj ® «y for some linearly

independent f , ... , f„ £ X*.
By Proposition 1 for any x £ X and x* £ X* norming for x*(Qx) > 0.

Next for any h with \h\ = 1 a.e. hx* is norming for hx if x* is norming for

x. Hence hx*(Q(hx)) > 0, i.e.,

¿ (7 fjhxdp) ( ÍUjhx*dp)>0.
7=1

By Lemma 5 fx £ span{w;x* : j = I, ... , n}. So if B - supp f\(p(B) >
0), then p-|B € span{^ : j = 1.«}. By re-arrangement invariance of X

for every measure-preserving map o: [0, 1] —► [0, 1]   x* o er is norming for

x o o and so
X o fj

x* o o
|B€span|^:; = 1, ... , zzj ,

i.e., the set {[(^r) °<t]|ä|ct : [0, 1] —> [0, 1] measure preserving} is finite dimen-

sional, which is impossible unless ^ isa constant. But then by Proposition 3

we conclude that X is isometric to L2[0, 1], contrary to our assumption.   D

Remark. Notice that in the proof of Theorem 4 we use re-arrangement invari-

ance of X only in the final step to conclude that if the set {x\: x £ X, x* £ X*
norming for x} is finite-dimensional, then it is one-dimensional. A similar con-

clusion is true also in spaces of the form X(Y), Xx (X2(... (Xm) ■■■)), where X,
Y, Xj are r.i. and Theorem 4 holds as stated also for those spaces.
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