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PERIODICITY AND INDECOMPOSABILITY

W. T. INGRAM

(Communicated by James E. West)

Abstract. In this paper we characterize the existence of periodic points of odd

period greater than one for unimodal mappings of an interval onto itself. The

interesting juxtaposition of this condition with the occurrence in inverse limits

of the well-known Brouwer-Janiszewski-Knaster continuum is explored. Also

obtained is a characterization of indecomposability of certain inverse limits

using a single unimodal bonding map.

0. Introduction

This paper grew out of investigations of inverse limits on [0, 1] using logistic

bonding maps and inverse limits on [0,1] using families of piecewise linear

bonding maps. In each case, a "standard" indecomposable continuum, the so-

called Brouwer-Janiszewski-Knaster continuum (throughout this paper we will

refer to this continuum as the B-J-K continuum) [8, p. 204], kept occurring.

It showed up often enough that the author isolated a theorem (Theorem 2)

which produces the phenomenon. Then, the author observed that, by perturb-

ing the condition which gives rise to the B-J-K continuum, for a certain class

of mappings (which includes the logistic family, unimodal maps, and the tent

family) a characterization of the existence of periodic points of odd period for

this class of mappings is obtained (Theorem 6). By considering composites and

looking at appropriate subintervals on which the restricted mapping belongs to

the appropriate class, this theorem yields the existence of periodic points of

periods which are odd multiples of powers of two. Dynamicists have long been

interested in periodic points whose period is not a power of two (see [10], for

example). The author's interest arises from the connection with the existence

of indecomposable continua in the inverse limit [1], [6].

By a continuum we mean a compact, connected subset of a metric space. By
a mapping we mean a continuous function. If Xx, X2, X$, • • • is a sequence

of metric spaces and fx, f2, h, •■■ is a sequence of mappings (called bond-
ing maps) such that, for each positive integer z, / : Xi+X —> X¡ then by the

inverse limit of the inverse limit sequence {X¿, fi} is meant the subset of the
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product space, n xi >t0 which the point (xx, x2, x3, • • • ) belongs if and only
¿>o

if fi(Xj+x) = x¡. The inverse limit of the inverse limit sequence {X¡, fi} is

denoted   lim {X¡, /■} . Here, the product space is metrizable with the metric

d(x, y) = £\>0 ^%r^ where, for each i, d¡ is a metric for X¡ bounded by
one. It is well known that, when the spaces X¡ are continua and the bonding

mappings are continuous, the inverse limit exists and is a continuum. In case,

for each i, X,■■ = X and / = /, we denote the inverse limit by lim {X, /} .

In case Y is a subcontinuum of X and f[Y] is a subset of Y, for conve-

nience, we sometimes denote lim {Y, f\Y} simply by lim {Y, /} . A point

x is said to be a periodic point for a mapping / provided there is a positive

integer zz such that fn(x) = x. If zz is the least positive integer k such that

fk(x) = x then we say that x is periodic of period zz. A mapping of a con-
tinuum is monotone provided each point inverse is a continuum. A mapping
of an interval [a, b] onto itself is called unimodal on [a, b] provided / is

not monotone and there is a point c of (a, b) such that f(c) belongs to the

set {a, b} and / is monotone on [a, c] and [c, b]. (This is a slightly more

general definition than that of a unimodal map [3, p. 63].)
In this paper we will concern ourselves with unimodal mappings of intervals

onto themselves. There are four cases to consider when studying unimodal

mappings of an interval [a,b] onto itself:   (1)  f(b) = a, (2) f(a) = a,

Type   (1) Type   (2)

Type   (3) Type   (4)

Figure 1
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(3) f(a) = b, and (4) f(b) = b. These we will reference by Type (I), Type
(2), Type (3), and Type (A). These four types are illustrated by four "typical"
pictures shown in Figure 1. It is evident that each unimodal mapping of Type
(3) is topologically conjugate to one of Type (1) and each one of Type (4) is

topologically conjugate to one of Type (2). Since we are mainly interested in

inverse limits along with dynamics and since topologically conjugate mappings

yield the same dynamic behavior and homeomorphic inverse limits, we will

limit our study to those of Type (1) and Type (2). For mappings of these two

types, denote by c a point between a and b such that f(c) = b and by p the

fixed point of / in [c, b]. If / is a Type (2) unimodal mapping and f(b) < c

then [f(b), b] is thrown onto itself by / and lim {[f(b), b], f\[f(b), b]} is

sometimes called the core of  lim {[a, b], /} .

1. Bennett's Theorem

In a beautiful Master's Thesis at the University of Tennessee, Ralph Bennett

[2] proved a number of basic theorems about inverse limits on intervals. In

particular, he proved a theorem which we only slightly generalize here as The-
orem 1. This theorem gives the overall structure of the inverse limit and shows

that the understanding of inverse limits using Type (2) unimodal bonding maps

amounts to understanding the structure of the core because the core is the in-

verse limit on [f(b), b] using the restriction of / to [f(b), b] which is a Type
(1) unimodal map provided f(b) < c.

Theorem 1 (Bennett). Suppose f isa mapping of the interval [a, b] onto itself

and d is a number between a and b such that ( 1 ) f[d, b] is a subset of
[d, b], (2) f\[a, d] is monotone, and (3) there is a positive integer j such that

p[a, d] = [a, b].  Then   lim {[a, b], /} is the union of a topological ray R

and a continuum K such that R- R = K.

Proof. Let M =  lim {[a,b], f} and K =  lim {[d, b], /}. For each pos-

tive integer zz, let a„ denote the inverse limit using the restriction of / on
subintervals of [a, b] determined by (1) the zz th factor space is the interval

[a, d] ; (2) if i is less than zz, the i th factor space is fn~'[a, d] ; and (3) if

i is greater than zz, the z"th factor space is the (i - zz) th preimage of [a, d]

under the monotone mapping f\[a, d]. Let R = ax U a2 U a$ U ■ • • . Note that,

for each positive integer j, a¡ is a subset of a7+i and each a, is an arc, so R

is a ray. To see that each point of K is a limit point of R, note that if x and

v are points of M with xn - yn then d(x, y) < 2~n . Then, if zz is a positive

integer and x is in K, x„ is in [d, b]. By condition (3) of the hypothesis of

this theorem, there are a point y of [a, d] and a positive integer j such that

fJ(y) = x„ . There is a point p of an+j whose (zz + j) th coordinate is y, so

d(x, p) < 2~". Thus, K is a subset of R. On the other hand, if x is a point

of M not in R then x is not in a_n for any zz. Consequently, x„ > d for

each zz, so x is in K. Thus, K = R- R.

2. B-J-K CONTINUA

In this section we demonstrate the existence of the B-J-K continuum in cer-

tain inverse limits. For a picture indicating this continuum, see, e.g., [8, p. 204].
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This continuum is homeomorphic to an inverse limit on the interval [0,1] us-

ing the mapping / defined by f(x) = Ax(l - x) as the only bonding map.
More generally, James F. Davis has shown that if g is a confluent mapping of

[0,1] of degree 2, then   lim {/, g} is homeomorphic to   lim {/,/}, [4].

Theorem 1 applies to a class of mappings which includes those unimodal
mappings of Type (2) with the additional properties that f(b) < c and, for

some j > 1, P(b) > c. In Theorems 4 and 5 in this section, the hypotheses

require that f(b) < c and f2(b) > c. Theorems 2 and 3 below address the

nature of the core of certain inverse limits with unimodal bonding mappings of

Type (2). In these inverse limits with Type (2) mappings, the core is an inverse

limit with unimodal bonding mappings of Type (1). Recall that p denotes the

fixed point for / in (c, b].

Theorem 2. Suppose f is a Type (1) unimodal mapping of an interval [a, b]

onto itself and q is a point of (c, p] such that f2(q) = a and f(a) = q. Then
the inverse limit of the inverse limit system {[a, b], /} is the union of two B-J-K

continua intersecting at a point or an arc.

Proof. Note that, under the hypothesis of Theorem 2, the intervals [a, f(q)]

and [q, b] are each mapped onto the other by /. Thus P\[a, f(q)] and

f2\[q, b] are both degree 2 confluent maps throwing the respective intervals

onto themselves.    Thus by Davis's theorem [4],    lim {[a, f(q)], P}  and

lim {[q, b], p} are both homeomorphic to the B-J-K continuum. Each of

these continua is homeomorphic to a subcontinuum of M = lim {[a, b], f}

and their union is M. Their intersection is the arc lim {[q, f(q)\, /} or is

the point (p,p, p, ■■■) in case q = p .

Theorem 3. Suppose f is a Type (I) unimodal mapping of an interval [a, b]

onto itself and q is a periodic point of period two in (c, p) such that f(a) =

f(q). Then the inverse limit of the inverse limit system {[a, b], /} is the union
of an arc a and two mutually exclusive B-J-K continua each intersecting a at

one of its end points.

Proof. Under the hypotheses of this theorem, the intervals [a, q] and [f(q), b]

are mutually exclusive and swapped by / and, as in the proof of Theorem 2,

the B-J-K continua are produced by this phenomenon. The arc a is

lim{[q,f(q)],f}.

Theorem 4. Suppose f is a Type (2) unimodal mapping of an interval [a, b]

onto itself and q is a point of (c, p] such that P(q) = q and P(b) = q . Then
the inverse limit of the inverse system {[a, b], /} is the union of a topological

ray R and a decomposable continuum C such that (1) C is the union of two

B-J-K continua intersecting at a point or an interval and (2) R- R = C.

Proof. The ray R can be obtained by applying Theorem 1. The continuum

C can be obtained by observing that f\[f(b), b] satisfies the conditions of

Theorem 2.

Theorem 5. Suppose f is a Type (2) unimodal mapping of an interval [a, b]

onto itself and q is a periodic point of period two in (c, p) such that P(b) —

f(q). Then the inverse limit of the inverse system {[a, b], /} is the union of
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a topological ray R and a decomposable continuum C such that ( 1 ) C is the

union of an arc a and two mutually exclusive B-J-K continua each intersecting

a at one of its end points and (2) R- R — C.

Proof. The proof is similar to that of Theorem 4 except that one applies The-

orem 3 instead of Theorem 2.

3. Periodic points of odd period

In Theorem 6 we see that by perturbing the condition in Theorem 2 that

f(a) fall on a fixed point or a periodic point of period 2 we obtain, for the class

of unimodal mappings, a characterization of the property of having a periodic

point of odd period greater than one.

Lemma. Suppose f is a Type (I) or Type (2) unimodal mapping of an interval

[a, b] onto itself q is the first fixed point for f2 in [c, b], and f2(b) < q.
Then there is a positive integer k such that f2k+x(c) < c.

Proof. Since f(c) = b,if f2(b) < c then p(c) < c. Suppose f2(b) > c. Note
that, on the interval [c, q], the function f2 is non-decreasing and, except for

the point (q, q), its graph lies below the identity. Thus, V = {f2"(b) | zz
is an integer and f2"(b) > c} is a finite set, for if not, then the sequence

P(b), P(b), P(b), ■■■ is a decreasing sequence bounded below, so it con-

verges to a fixed point for f2 in [c, q). This contradicts the fact that q is

the first fixed point for f2 in the interval [c, p]. Let k be the least integer zz

such that f2n(b) <c. Then, Pk+X(c) <c.

Theorem 6. Suppose f is either a Type (1) or a Type (2) unimodal mapping of

an interval [a, b] onto itself and q is the first fixed point for f2 in [c, b]. Then,

f has a periodic point of odd period greater than 1 if and only if f2(b) < q.

Proof. Suppose / is a unimodal mapping of [a, b] onto itself and f2(b) < q .

If / is of Type (1) but not of Type (2), then / has no fixed point in [a, c]. For

convenience, we assume that if / is of Type (2) then / has no fixed point in

(a, c] (the alternative would be to use the last fixed point for / in [a, c] in the

place of a in the argument which follows). If / is of Type (2), again assuming

that / has no fixed point in (a, c), it is easily seen that, for each positive

integer zz > 1 , there is a point y between a and c such that f"(y) = b > y.

If / is of Type ( 1 ) and the point a is not a periodic point of odd period for /,

then, for each k , f2k+x(a) > a. Consequently, whether / is of Type (1) or of

Type (2), either the point a is a periodic point of odd period for / or, for each

positive integer k , there is a point y of [a, c) such that f2k+x(y) > y . Now,

by the Lemma, whether / is of Type (1) or of Type (2), there is a positive

integer k such that Pk+X(c) < c. Since f2k+l(c) < c and for the same k

there is a point y between a and c such that f2k+x(y) > y , f2k+x has a fixed

point x in [y, c]. Since / has no fixed point in (a, c], x is a periodic point

for / of odd period greater than 1.

On the other hand, suppose / is of Type (1) and f2(b) > q , i.e., f(a) > q .
Then if x is a point of the interval [a, f(q)] then f(x) is in [q, b], while if

x is in [q, b] then f(x) is in [a,f(q)\. As a consequence, f2 throws each
of the intervals [a, f(q)] and [q, b] onto itself. Thus, if x is in [a, f(q)]

and is a periodic point for / of odd period, then x is in [q, f(q)]. Similarly,
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if x is in [q, b] and is a periodic point for / of odd period, then x is in
[q, f(q)]. But, f\[q, f(q)] is a monotone mapping which has no periodic point
of odd period greater than one. So, unimodal mappings of Type ( 1 ) for which

P(b) > q bave no periodic points of odd period greater than one. In case /

is of Type (2) and P(b) > q, if x is a point of the segment (a, f(b)), there
is a positive integer n suchthat f"(x) belongs to [f(b),b]. Since [f(b),b]
is thrown into itself by /, the only points of (a, f(b)) fixed by any iterate of

/ are fixed by /. On the interval [f(b), b], the mapping / is a unimodal
mapping of Type (1) for which f2(b) > q and the previous case applies to

produce the result that / has no periodic points of odd period greater than

one.

4. Indecomposability

In this section we investigate the occurrence of indecomposable continua

in inverse limits of intervals using unimodal bonding maps. Indecomposable

continua are known to be present in an inverse limit on intervals with a single

bonding map when the bonding map has a periodic point whose period is not
a power of 2 [7]. In general, indecomposability of a subcontinuum can be

shown by finding an interval on which the conditions of Kuykendall's theorem

[9, Theorem 2, p. 267] are satisfied. Kuykendall proved that lim {X¡, /}

is indecomposable if and only if for each positive integer i and each positive

number e there exist a positive integer zz > i and three points of Xn such that

if L is a subcontinuum of X„ containing two of them then

di(x, fi o fi+x o • • • o fn-x(L)) < e

for each x in X¡. In most of the applications of this theorem in this paper,

we find two subintervals, each of which is thrown onto the whole interval either

by / or by some composite of /. Here we characterize when a Type (1)

unimodal mapping produces an indecomposable inverse limit and when a Type

(2) unimodal mapping produces an indecomposable core.

Theorem 7. Suppose f is a Type ( 1 ) unimodal mapping of an interval [a, b]

onto itself and q is the first fixed point for f2 in [c, b]. Then, lim {[a, b], /}

is indecomposable if and only if f(a) < q.

Proof. Observe that if f(a) < q then f[a, c] contains [p, b] where p is the

fixed point for / in [c, b], so p[a, c] contains [a, p]. Hence, for each k ,
the point b is a member of pk+x([a, c]). By the lemma, there is a positive

integer k > 1 such that f2k+x(c) < c. Since / is of Type (1), p(c) = a,

and, consequently, f2k~x(a) < c. Thus, f2k([a,c]) contains [a, b]. Since

f"[c,b] contains [a,b] for each zz, lim {[a,b],f2k} is indecomposable.

Thus,   lim {[a, b], /} is indecomposable.

On the other hand, if f(a) > q , as observed in the proof of Theorem 6, p
throws each of the intervals [a, f(q)] and [q, b] onto itself. So, the inverse

limit of the inverse system {[a, b], p} is the union of   lim {[a, f(q)], P}

and   lim {[q,b],p}.

Theorem 8. Suppose f is a Type (2) unimodal mapping of an interval [a, b]

onto itself f has no fixed point between a and c, and q is the first fixed point
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for p in [c, b]. Then, the core of lim {[a, b], /} is indecomposable if and

only if f2(b) <q.

Proof. Because / has no fixed point between a and c, it is easy to see that the

interval [f(b), b] is mapped onto itself by /. The core of  lim {[a, b], /} is

lim {[f(b), b], /} . On the interval [f(b), b], f is a unimodal mapping of

Type ( 1 ) which satisfies the hypothesis of Theorem 7, and this theorem follows.

Remark. In Theorem 8, we assume that / has no fixed point between a and
c. Unimodal mappings of Type (2) present minor technical difficulties if they

have fixed points other than a in [a, c] and f(b) falls on or between fixed
points in (a, c] (see, e.g., the Type (2) mapping of Figure 1). If this is the

case, then the sequence f(b), P(b), P(b), •■• converges to a fixed point a'

of /. If f(b) < a', then lim {[f(b), b], /} is indecomposable. To see this,

consider the three points f(b), c, and b. It is easy to see that / throws both

[c, b] and [f(b), b] onto [f(b), b]. However, / may not throw [f(b), c]

onto f[(b), b], but [a', b] and thus [c, b] is a subset of f[f(b), c], so P
throws [f(b), c] onto [f(b), b]. By Kuykendall's theorem, the inverse limit

is indecomposable. On the other hand, if f(b) > a', then lim {[a', b], /}

is indecomposable. For the three points f(b), c, and b, if x and y are two

of them then cl((jj>0p[x, y]) = [a', b]. Again, by Kuykendall's theorem, the

inverse limit is indecomposable. Note that, if a' > a, then lim {[a, a'], /}

is an arc which intersects but does not lie in this indecomposable continuum.

5. Full families

This section depends on results from Devaney [5] and Collet and Eckmann
[3]. The reader who is not already familiar with the theory of kneading se-

quences and full families [5] (transition families [3]) is referred to these two
sources for information. Such families are interesting dynamically and include

such families of mappings of [0, 1] as Sx(x) = Xsin(nx) for 0 < X < 1 and
Sx(x) = sin(Xnx) for 0 < X < 1 not specifically addressed elsewhere in this

paper. Unfortunately, the notation and terminology are not consistent between
these two references. However, we are interested in the observation that the
phenomenon of Theorem 6 always occurs in these families and, consequently,

in inverse limits using single members of such families, B-J-K continua occur

and signal the onset of indecomposability either of the core or of the inverse
limit itself. Consequently, we will not attempt to resolve the differences here.

Instead, we identify the salient features of full (transition) families necessary

to argue Theorem 9 and leave matters there. Suppose {fx \ Xq < X < Xx} is

a full (transition) family of mappings such that fi maps the interval [ax, bf\
onto itself. Both sources require the members of the family to be unimodal and
have negative Schwarzian derivative (the Schwarzian derivative of / at x is

O? -\(Cu¡))2 ). As above, we denote the single critical point between ax and

bx by Cx (with the subscript X included on the critical point even though in the

two sources this point remains constant, 0 in [3] and \ in [5]). In Theorem

9, we shall restrict our attention to full (transition) families of Type (1) or of
Type (2). In case of Type (1) or Type (2) unimodal maps on an interval, de-

note the first point of (cx, bx) of period 2 by qx and note that in the families
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identified here and in Section 6, this is actually a fixed point for /. When

reading [3], the maps are Type (1) on [I-a, 1], while in [5], they are Type (2)

on [0, X] but of Type (1) on [fx(X), X]. According to Collet and Eckmann [3,
Proposition III. 1.2, p. 174], the kneading sequences RLRC and RL°° both
occur in the family. (The kneading sequence is a record of the relation of the

orbit of c to c with an R meaning that the term of the orbit is greater than

c, an L meaning that the term of the orbit is less than c, and a C meaning

the term of the orbit is c. E.g., the kneading sequence RLRC for / means

that f(c) > c, f2(c) < c, p(c) > c, and f4(c) = c.) Devaney [5, p. 149], on
the other hand, makes it clear that one needs continuity in the parameter, X.

Using these features of full (transition) families, we prove the following:

Theorem 9. If {fx | Xq < X < Xx} is a full (transition) family of mappings, then

there exists a parameter value, X, such that f2(bf) = qx ■

Proof. We shall restrict our attention to full (transition) families where all mem-

bers of the family are of the same type and this is Type (1) or Type (2). Con-

sequently, on [cx, bx] the mapping / is non-increasing. Observe that, since

there is a parameter value p where the kneading sequence RLRC occurs,

fp(bß) > Cf,. If f^(bß) < qß, then, since qß <pß, fj(bß) > p,,. However,
this involves a contradiction since the fourth term of the kneading sequence is

a C. Thus, f^(bft) > qß. At the parameter value Xx , RL°° is the kneading

sequence. Here, fx2(bx,) < q^ ■ Thus, by the continuity in the parameter X,

there is a parameter value X where f2(bx) — qx-

Remark. As a consequence of this theorem we see that in every full family of

mappings there is a parameter value for which the inverse limit contains a union

of two B-J-K continua intersecting at a point and beyond which the mapping

has a periodic point of odd period greater than one.

6. Specific families

In this section we discuss some uses of the theorems of this paper in four spe-

cific families of mappings. The investigation of inverse limits in these families

spawned this paper. The four families are:

the logistic family on [0, 1 ] given by

fx(x) = AXx(l - x),        0</l<l;

the tent family on [0, 1] given by

2Xx, if 0 < x < i

2A(1 -x),    \ <x < 1,
Ti(x) = {        '     N      ,      "    ~l fori<A<l;

the family &~ on [0, 1 ] given by

if 0 < x < \
■  for 0 < t < 1 ;

2(t- l)(x- l) + t,    \ < x < 1,

and the family & on [0, 1 ] given by

[ 2(1 - t)x + t,    0<x<\
gt(x) = { ' -     ;       on[0,l]for0<r<l.

[ 2(1 -x), { <x< 1,
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The members of the logistic family are Type (2) unimodal mappings on [0, X]

for all X as are the members of the tent family. The members of & are Type
(2) and the members of & are Type (1) for all t.

We begin with the logistic family. The non-zero fixed point for the mapping

fx in the logistic family is p = 1 — ¿. The only parameter value for which

f2(X) is a true period two point is X = ^^ . (Note. At this parameter value the

period 2 point is q = \ and the inverse limit is a (sin £)-curve). The conditions

in the hypothesis of Theorem 4 are met only at the parameter value which is the

solution XMi to p(X) = 1 - ¿ . Solving for Xmx amounts to solving the cubic

polynomial SX3 - AX2 - 2X - 1 = 0. The solution is i + -^-+ ^l9+/m ,
6      3v/l9+v^97 6

which is approximately 0.91964. Thus, by Theorem 6, members of the logisitic

family have periodic points of odd period only for parameter values greater than

Xm¡ ■
For the member Tx of the tent family, the non-zero fixed point is p = ¿xfi •

There is no true period two point in [\,p\ for any parameter value. The
conditions in the hypothesis of Theorem 4 are met only at the parameter value

X = yfl. Thus, by Theorem 6, members of the tent family have periodic points

of odd period only for parameter values greater than \/2.

For the the member / of the family &~, the non-zero fixed point is p =

2^3 . The only true period two points occur for t = ¿ at which every point

of [\, p) is a period two point. (Note. At this parameter value the inverse

limit is, once again, homeormorphic to a (sin £)-curve). The conditions in

the hypothesis of Theorem 4 are met only at the parameter value for which

P(l) = p ■ This value is t — 7~g . Thus, by Theorem 6, members of &

have periodic points of odd period only for parameter values less than 7~'f^ .

For the member gt of the family S? , the fixed point is p — I. There are no

true period two points in [j , |] for any member of 5? . The conditions in the

hypothesis of Theorem 2 are met only when gt(0) — \ . The solution is t = \.

Thus, by Theorem 6, the members of & have periodic point of odd period only

for parameter values less than |.
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