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Abstract. Recently S. D. Cohen resolved a conjecture of Chowla and Zassen-

haus (1968) in the affirmative by showing that, if f(x) and g(x) are integral

polynomials of degree n > 2 and p is a prime exceeding (n2 - 3« + 4)2 for

which / and g are both permutation polynomials of the finite field Fp , then

their difference h = f - g cannot be such that h(x) = ex for some integer

c not divisible by p . In this note we provide a significant generalization by

proving that, if h is not a constant in Fp and t is the degree of h , then

t > 3«/5 and, provided t < n — 3, t and n are not relatively prime. In a

sense this measures the isolation of permutation polynomials of the same degree

over large finite prime fields.

1. Introduction

For each prime p let Fp denote the finite field of order p . A polynomial

f(x) is said to be a permutation polynomial (PP) of the field Fp if / induces
a 1-1 mapping of Fp onto itself; see Lidl and Niederreiter [5, Chapter 7]. The

Chowla and Zassenhaus conjecture was recently proved by Cohen [2] in the

following more precise form:

Theorem 1. Let f(x) be a polynomial with integral coefficients and degree « >

2. Then for any prime p > (n2 - 3« + 4)2 for which f (considered modulo
p) is a PP of degree n of Fp , there is no integer c with 1 < c < p for which

f(x) + c x is also a PP of Fp .

The purpose of this note is to provide a rather substantial generalization

of Theorem 1. There are numerous ways to consider extending Theorem 1,

for example, if one considers f(x) to be a PP over Fp, one could consider

replacing the monomial x by a more general PP over Fp , in fact by an arbitrary

PP, say g(x), over Fp . This however does not really provide a generalization

since if we replace x by the polynomial over Fp representing g~l(x), we have

f(g~l(x)) + cx = h(x) + ex, which is of course in the original form. Thus if
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f(x) is a PP over Fp , we consider the question of when f(x) + g(x) can be a
PP, where g(x) need not itself be a PP of Fp .

There is also a related viewpoint. Let / and g be a pair of PPs of degree «

over Fp not trivially connected by f(x) = g(x) + c, c £ Fp . Let h = f - g,
and let t be the degree of «. Then t ^ 0 and Theorem 1 implies that, for

large primes p, h(x) ^ ex, c £ Fp. That is, / and g cannot be so close
as to differ merely by a linear term ex. The question naturally arises as to
whether / and g can be separated by another polynomial of smallish degree.

We show that, in fact, necessarily t > 3«/5 . Moreover, provided t < n — 3,

t and « cannot be relatively prime. In this connection, note that trivially, if

f(x) = g(x + c), c t¿ 0, and p > « , then t = « - 1 and there are examples
with t = n - 2 (see below). We stress that we have demonstrated that PPs of
given degree are isolated (in the described sense) over sufficiently large prime
fields. It is an open question as to how far such isolation prevails in the most
general setting.

2. Generalization

Suppose f(x) is a PP of Fp of degree « > 2 and h(x) is any polynomial

over Fp of degree / where 1 < t < 3«/5. Then we show that f(x) - h(x)

cannot be a PP of Fp. The bound t = 3«/5 is attained because for p =

±2 (mod 5), if we let f(x) = D$(a, xm) where D$(a, x) - x5 - 5ax3 + 5a2x

is the Dickson polynomial of degree 5 with (m, p- 1) = 1 and let g(x) = x5m

so that g(x) is a PP of Fp , then t = 3m = 3«/5 . Here we recall that D$(a, x)

is a PP of Fp if and only if (5, p2-1) = 1 ; see [5, Theorem 7.16]. This example
(with m = 1 ) also shows that it is possible that t = « - 2.

In particular we prove

Theorem 2. Suppose f and g are monic PPs of degree « > 3 over Fp where

p > («2 - 3« + 4)2. Set f-g — h, and let t be the degree of h. Suppose t > 1.
Then t > 3«/5. Moreover, provided « > 5 and t < « - 3, then (t, n) > 1.

As a special case of Theorem 2 we note that if g(x) — f(x) -ex is a PP

for some 1 < c < p, then h(x) = ex so that t — 1, and hence « < 5/3, a
contradiction. Hence Theorem 2 implies Theorem 1. It is worth pointing out

that from results of Cohen [2], « must be odd, and so we make this assumption

throughout the rest of the paper.

3. Proof of Theorem 2

Since « > 3, we can assume t < n — 1. As in Cohen's proof [2] of the

Chowla and Zassenhaus conjecture, we first normalize / and g so that /

and g are both monic and have the coefficient of x"~x equal to zero (this

requires that t ^ n - I). Suppose that / = fo(l) and g = go(¿) for some

normalized PP £(x). Choose such a polynomial I whose degree d is maximal

and write degree (fif) = degree (go) — no where « = ¿/«o. Of course d < «

since 1 < t < n — 2. Then « = ho(l) where degree («o) = ¿o and t = dto .
Suppose d > 1. Then (t, n) > 1. Moreover, t < 3n/5 if and only if

to < 3«o/5 and so we may replace / and g by fo and go and assume d = 1.
Hence, in every case we may suppose that d = 1.

Next suppose that t = n -2. Then « ^ 3 and t > 3«/5 with equality only
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if « = 5, t = 3 (as in the example preceding the statement of Theorem 2).

Thus we may also assume that t < n — 3 (with « > 5 ).

From Corollary 6 of [2] we have that f = f2(f\), g = g2(g\) where f2 and
g2 are normalized and

f(x) = Dmi(a,xm2) + a,    a¿0,a£Fp,        m = mxm2>3,

gl(x) = Dki(b,xk>) + ß,    b¿0, ß£Fp,       k = kxk2>3.

Moreover in (*) if m\ = 1, then a ^ 0 unless f(x) = x" and a similar

statement holds for g. Further at one point in Case 3 below we shall assume
that in (*), m and k have been chosen to be maximal in a natural sense; see

the discussion of that case for details. We recall that Dm(a, x) is the Dickson

polynomial of degree m with a £ Fp defined by

|m/2J . A
A»(«,*)=£^( m:J)(-ay *»>-*',

j=0 J \    J    /

see [5, p. 355]. It is worth pointing out here that the results in (*) follow from

a result of Fried [3] which is a critical part of his proof of the Schur conjecture.

We now prove Theorem 2 by considering three cases.

Case l:f\(x) - xm + a and gx(x) - xk + ß with aß / 0. Since d = 1, we

have (m, k) = 1, and from [2, Lemma 4], t = max{« - m, n-k} and km\n .

Hence (t, n) = k > 1 or m > 1 and t > n - «/3 = 2«/3 > 3«/5 .

Case 2:fx(x) = Dmi(a, x™2) + a and gi(x) = xk + ß with m. > 1. Then

(k, m2) = 1 and t = max{«-2«i2, n-k} , where m2 > 1 since t ^ n-2. Also

(t, n) > 1 and if k < 2«î2 , then because /rz2 > 1, 1 - k/n > 1 - 1/«î2 > 2/3 .
If k > 2m2, then 1 - 2w2/« > l - 2/m. > 1 - 2/5 = 3/5 .

Case 3: f(x) = Dm¡(a, x™2) + a and gx(x) = Dkl(b, xkl) + ß , where mx > 1,

k\ > 1. In this case (m2, k2) = 1 and [2, Lemma 4] implies

t = max{« - 2«?2, « - 2k2},

unless m2 = k2 = 1 and a = b (if a ^ b then t = n - 2, a contradiction).

Thus, except in this last situation,

i-2m2>i__L>!.
« mi      5

On the other hand if m2 = k2 = 1 and ¿z = b we have (k, m) = 1, for
otherwise /i = f0(Dr(a, x)) and gi = go(Dr(a, x)) with r = (k, m). As

noted at (*), we assume here that m is maximal in the sense that, if a = 0,

then f2(x) t¿ H(Dr(am , x)), r > 5, for any polynomial //, and, similarly, k

is maximal. We also have

= -ax""m + • • • + (-¿zw + ^)x"-2m + • • •
m m

- (jßx"~k + ■■■ + (^ak + B)x"~2k + ■■■),

where f2(x) = xN + AxN~2 + ... , N = n/m, and similarly for g2.
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We note that n — m and n-k are even while « - 2m and n — 2k are

odd so that no cancellation occurs among the displayed terms. Moreover, by

the maximality of m, if a = 0, the coefficient of x"~2m is non-zero, and

similarly that of x"~2k is non-zero if ß — 0. Also k and m both divide «

with k > 5 , m > 5 . Depending upon whether a or ß are zero we have the

cases:

' max{n - 2m, n - 2k}     ifa = ß = 0, (1)

t={ max{« - m, « - 2k}       ifa^O, ß = 0, (2)

max{« - m, « - k}        ifaß^O. (3)

We also note that if a = 0, ^/Owe have a situation analogous to (2). Clearly

in each case (t,n) = k or m so that (t, n) > 1. For (1) assume m < k . Then

/      ,     2«j     ,     10     5     3

« « 35      7     5

For (2), if m < 2k, then t/n > 1 - 7/35 = 4/5 ; while if m > 2k, then
t/n > 1-2/11 = 9/11 > 3/5. Finally for (3), t/n > 6/7 > 3/5. This
completes the proof.

Theorem 2 can be applied to the theory of uniform distribution of sequences

over finite fields. A sequence (x„), n = 0, 1, ... , of elements of Fq is said to

be equidistributed (or uniformly distributed) in Fq if

«■=£&£-1.N-yoo        N q

where A(c, N) = A(c, N, (xn)) denotes the number of « with 0 < « < N - 1

for which x„ = c (compare with [4, p. 331, Exercise 3.5]). For a periodic
sequence (xn ), this definition is obviously equivalent to the requirement that

each element of Fq occurs equally often in the full period of (x„).

Corollary. Suppose f(x) isaPPof Fp of degree « > 3 with p > (n2 -3n + 4)2
and h(x) is any polynomial over Fp of degree t > 1 where t < 3«/5 or t < «-3

and (t, n) — 1. Then the sequence (f(m) + h(m)), m = 0, I, ... , cannot be

equidistributed in Fp.

Before closing we remark that as with Cohen's Theorem 2 of [2], we could

extend our Theorem 2 above to "tame" PPs over general finite fields.
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