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REFLEXIVITY OF TENSOR PRODUCTS
OF LINEAR TRANSFORMATIONS

WING SUET LI AND ELIZABETH STROUSE

(Communicated by Palle E. T. Jorgensen)

Abstract. Let A and B be linear transformations on finite-dimensional

Hubert space. We characterize the reflexivity of A ® B in terms of certain

characteristics of A and B .

1. Introduction

Let %?x and %?2 be separable, complex, Hubert spaces, and suppose that Tx
and T2 are bounded linear operators acting on ßifx and %f2, respectively. Then

the tensor product Tx ®T2 is a bounded linear operator acting on %{® %?2,

and one may ask to what degree the structure of Tx ® T2 is determined by that

of Tx and T2. For instance, it was shown in [2] that the spectrum a(Tx ® T2)

is determined by the equation

o(Tx ® T2) = o(Tx)o(T2) = {Xfi: X £ o(Tx), p £ o(T2)}.

Also, if Ti is similar to U¡ via the invertible operator X¡, i = 1, 2, then

Tx <g> T2 is similar to Ux ® U2 by virtue of the equation

(Xx ® X2)(TX ® T2)(XX ® X2)~x = UX®U2,

and so the similarity invariants of Tx ® T2 are completely determined by those

of 7] and T2. However, this information alone does not enable us to answer
all questions concerning the structure of Tx ® T2 in terms of the structure of Tx

and T2. For example, one may ask whether the reflexivity of Tx ® T2 follows

from that of Tx and (or) that of T2. Very recently it was shown that in the

infinite-dimensional case (see [5]) there exists Tx and T2 reflexive such that

Tx ® T2 is not reflexive. One is led to ask whether this type of "pathology"

is possible in the finite-dimensional case. We show here that it is not. We

present in addition (Theorem 3.1) necessary and sufficient conditions for the

reflexivity of the tensor product of two operators. This characterization of the

tensor product is an easy consequence of the Deddens-Fillmore theorem [4]
and a result from linear algebra concerning Jordan forms of tensor products.
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Results concerning the Jordan form of tensor products were first obtained in

the 1930s by Aitkin, Roth, and Littlewood [1,8, 6]. Some gaps in the original
proofs were filled in more recently by Marcus and Robinson [7] and by Brualdi

[3]. These results were rediscovered independently by the authors. We present

an elementary proof in §4.

2. Notation and preliminaries

Let 38(%?) be the algebra of all bounded linear operators on a complex

Hubert space X, and let j/ be a subalgebra of &(%?). We define Lat(j/)
to be the lattice of invariant subspaces of the family si and Alg(Lat(j/)) to
be the subalgebra of 38(%f) of operators which leave invariant all elements of

Lat(j/). We say that si is a reflexive algebra if s/ = Alg(Lat(j/)). We say

that an operator T £ ¿%(%?) is reflexive if the weakly closed algebra generated

by T and the identity operator I is reflexive.

Now, suppose that !%f is finite dimensional. For each X in fê and n in Jf

(the set of positive integers) let J(X, n) be the n x n complex Jordan block

matrix with eigenvalue X (with l's above the main diagonal). We denote by

N„ the matrix J(0, n), the nilpotent matrix with degree of nilpotence equal
to n. Let 6 be a fixed linear ordering of W. An m x m complex matrix

A will be said to be in Jordan form provided A is a direct sum of Jordan

blocks, say A = 0;=1 J(X¡, n¡), in which the distinct terms of the sequence

{Xx, ... ,Xk} appear as in the ordering 6 and the Jordan blocks corresponding
to the same eigenvalue appear with increasing size. In the following, we denote

by %?n an «-dimensional complex Hubert space equipped with a fixed (ordered)
orthonormal basis $„ = {e",..., e%} , and we say that an operator on ^ is in

Jordan form when its matrix with respect to en is in Jordan form. Clearly each
operator T acting on %?„ is similar to exactly one operator in Jordan form on

%?n which we denote by J(T).

Definition 2.1. Let A £ ¿^(ßlf), and let X be an eigenvalue of A . We define:

• nf to be the size of the largest Jordan block belonging to X,

• mf to be the size of the second largest Jordan block belonging to X

(mf = 0 if A has only one Jordan block belonging to X),
• SA  to be the set of all nonzero eigenvalues of A associated with a

one-dimensional eigenspace, and,

• TA to be the set of all nonzero eigenvalues X of A such that nf-mf >

1.

We say that X has the Deddens-Fillmore property for A if nf - mf < 1.

We note that the Deddens-Fillmore theorem characterizes reflexive linear
operators on finite-dimensional Hilbert space as exactly those operators A such

that for each eigenvalue X of A , nf-mf < 1. Thus, if A is reflexive, TA = 0 .
Now, suppose that A and B are linear operators acting on the Hilbert spaces

%?m and %„ , respectively. In order to determine the reflexivity of A ® B, we

need to know the relationship between the Jordan form of A ®B and that of A

and of B . Since A ® B is similar to the matrix J(A) ® J(B), we may assume

that A and B are in Jordan form. Since, by definition, the matrices J(A) and

J(B) relative to the orthonormal bases {e™}™^ and {e%}nk=x for ß?m and ^
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have the form

J(X\, h)® J(X2, i2)©• • • e J(XS, is)

and

J(ß\, j\) © J(P2, ji) © • • • © J(pt, jt),

respectively, it is clear that the matrix of J(A) ® J(B) with respect to the

orthonormal basis {ef ® e\ , e"//® e^, ... , e\m®ent, ... , e™ ® e% } will have the

form

0      (J(Xk,ik)®J(p,,Ji)).
\<k<s,  !</<(

Thus, the following theorem contains the necessary information.

Theorem 2.2 ([1, 3, 6-8]). Let n and m be positive integers.

(i) Let m <n. The matrix 7(0, m) ® J(0, n) = Nm® Nn has Jordan form

m-l

0(7(0, i) © 7(0 ,/))© (7(0, m) ® I„-m+l).
;=1

(ii) For p ^ 0, 7(0, m) ® J(p, n) has Jordan form ®"=1 7(0, m). Simi-

larly, for X^0, J(X, m) ® 7(0, n) has Jordan form 0™, 7(0, n).
(iii) Let m <n. For X, p ^ 0, J(X, m) ® J(p, n) has Jordan form

j=m—\

0 (J(Xp,n-m+l+2j)).
j=o

Proofs of Theorem 2.2 have appeared in [1, 3, 6-8]. The authors rediscovered

this theorem recently and present a new proof of it in §4.

3. The main theorem

Let nf ,mf, SA, and TA be defined as in Definition 2.1. We present nec-

essary and sufficient conditions for the reflexivity of A®B.

Definition 3.1. Let T be a linear operator on a finite-dimensional Hilbert space

H. We say that A is of type p if A is similar to a matrix of the form

J(X, I) © A0 where X ¿ 0 and o(A0) = {0} .

Theorem 3.2. Let A and B be linear operators on finite-dimensional complex
Hilbert spaces %?x and %{, respectively, where dim^i and dim ^ are both

greater than 1. Suppose that neither A and B is of Hype p\ Then A®B is

not reflexive if and only if

(l) ^0esAuTA,ßoesBuTB such that nfo + «* - 1 > max{Af¿Jo, 1}

where M^'^ = {nf + «*: X £ o(A), p £ o(B), Xp = X0po, (X,p) ¿

(Xo , Ho)}■

Proof. First, suppose that (1) holds. Let X0 and po be such that nf +n^-l >

max{M^'^o, 1}, and set y = X0po ■ We note that y ^ 0. Since (1) holds,

Theorem 2.1 (iii) implies that

„A®B _ „A    ,   „B  _ i
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and that

mA®B _ „A   ,nB   _ ->

Thus y does not satisfy the Deddens-Fillmore condition for A® B, and

A ® B is not reflexive.
Next, suppose that ( 1 ) does not hold and that y does not satisfy the Deddens-

Fillmore condition for A®B. If y ^ 0, then y = Xp where

nfB = nf + nB-\.

Since ( 1 ) does not hold, we may assume without loss of generality that X £

o(A)\(SA L)TA). Then X satisfies the Deddens-Fillmore condition for A , and

mf > 0. But, in this case

mf®B >mf + nB-l,

and so nf -mf> nf®B - mf®B > 1, contradicting the fact that X satisfies the
Deddens-Fillmore condition. Thus every nonzero eigenvalue of A ® B satisfies

the Deddens-Fillmore condition.

So, suppose that 0 e o(A ® B). There are three possible cases:

(i)   0 £ a(A), 0 * a(B) ;
(ii)   0 € o(B), 0 $ o(A) ;

(iii)   0 £ o(A) n o(B).

The first two cases are clearly equivalent.

In case (i) we have

(2) n*®B = m$»B = n¿.

To see this, let M — maxAe(7(ß) nB. If M > 1, (2) follows directly from

Theorem 2.2(ii). If M = 1, then, since dim^2 > I, B has at least two
eigenvalues, and so (2) once again follows from Theorem 2.2(ii). Thus, in cases

(i) and (ii), 0 satisfies the Deddens-Fillmore condition.

So, suppose we are in case (iii) and that o(A) = o(B) = {0}. Then, by

Theorem 2.2(i), n^®B = N = min{n^, nB} and, as above, we may assume

N > 1. In this case, if n$ ¿ nB , m^B = TV, and if n$ = «j3 , mfi®8 = N-l.

Now, suppose o(A) ¿ {0}. Then, if o(B) = {0}, then nfi®8 = m*®" = nB,
using the fact that A is not of type p. If o(B) ^ {0}, then, using the fact

that neither A nor B is of type p, with Theorem 2.2(i), (ii), we see that

riQ®B = Wq®b = max{«Q , nB} . In each case, 0 satisfies the Deddens-Fillmore

condition, and so A® B is reflexive.

The condition for matrices of type p to be reflexive are slightly different:

(I) If A and B are both of type p, then A ® B is reflexive if and only if

«o < max{wo , «0 } + 1    and   "0 ^ max{mo , nB} + 1.

(II) If one of the two matrices, say A, is of type p and B is not, then
A ® B is reflexive if and only if all nonzero X in the spectrum of B satisfy the

Deddens-Fillmore condition and nB < ma\{mB , nfi} + I.
We present some corollaries detailing the more interesting consequences.
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Corollary 3.3. Let A and B be linear operators on finite-dimensional complex

Hilbert spaces %fx and %?2, respectively, where dimJt and dim^ ore both

greater than 1.

(i) If SAUTA = 0 => A®B is reflexive for all B not of'type p '.
(ii) If A and B are both reflexive, then A® B is reflexive.

(iii) If A is reflexive and SA = 0, then A® B is reflexive for all B.
(iv) If o(A) = {0}, then A® B is reflexive for all B not of'type p '.

Corollary 3.4. Let T be a finite rank operator on a Banach space E. Let Ex ®E2

be a direct sum decomposition of E such that Ex is finite dimensional, Ex £

Lat T, and E2 ç ker T. Then T is a reflexive operator if and only if T\E{ is a

reflexive operator. Thus (i)-(iv) of Corollary 3.3 hold for finite rank operators

A and B.

Proof. Suppose that T\E[ is a reflexive operator. Let S £ Alg(Lat(T)). Then

S\e2 £ Alg(Lat(0E2)), so S¡El = XIEl. Yet v £E2, and set E\ = span^ , {v})

and E'2 = the complement in E of E[. Since 7]£| is reflexive, the Deddens-

Fillmore theorem implies that T\E> is reflexive. Thus S\E< = q(T), and S\E< =

XEi with q(0)=X. So S = q(T), Alg(Lat(T)) is composed entirely of polyno-

mials in T, and T is reflexive. On the other hand, if T is reflexive, the fact

that Lat T = Lat 7]£l © Lat 0El implies immediately that 7]£l is reflexive.

4. Proof of Theorem 2.2

It is well known and easy to derive that, if A is any linear operator on

finite-dimensional Hilbert space, then

dim(ker(^ - X)k) - dim(ker(^ - X)k~x)

(3) = number of Jordan blocks belonging to X of size > k

in the Jordan decomposition of A.

So, let Tm>„ = J(X, m)®J(p, n) - Xplmn . For X = p = 0, rank(7* „) =

(m-k)(n-k) ; for X = 0 and p^O, rank(T* „) = (m-k)n ; while for X / 0

and p = 0, rank(7* „) = (n-k)m (easily calculated by multiplying the block

matrices and noticing that the rank of the resulting matrix is exactly equal to

the number of nonzero rows), (i) and (ii) follow directly.

The proof of (iii) is more complicated. First, note that the matrix of rm„
with respect to an appropriate basis is of the form

0 ... 0     \

J(p,n)    '•• :

0

XN„    J(p,n)

0        XNn    I

lXNn   J(p,n)

0        XNn

\  0
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Let

f(J(p,n))m-x 0

0 (J(p,n))m~2

X =

\ 0

°\

(J(p,n))    0
0 /„/

It is easy to see that X is invertible and that Cm „ = X x(Tm,n)X is of the

form
(XNn       In        0        ... 0   \

Cm ,n —

0     XN„    In

0

V o
Notice that ran)t(Tm>n)k = rank(C,

(Cm,n)    —

/a0Nk   axNk~x

V    0

••       '••     XNn       In

.      0     XNn/

n)k and that

^xNk~m+x\

>Nk~xaoNk       axi\¿
0 a0Nk      I

where a¡ = Xk~'(k) and we define Nn J= 0 for j > 0 and (k) = 0 if i > k .

We use two rather technical lemmas to determine rank(C„¡m)k .

Lemma 4.1. Let p, k, r e 2", k > p > 0, p + r > 0. Let A be the matrix
with coordinates

k
(4) P-i + J

(i,j = 0,1, ... ,p + r)

where (k) is defined to be zero for I > k or / < 0. Then

,k,,k+\s        , k+p+r,

detA= :;??"*   .,k+r,,k+r-l , , k-px

Kp+r)Kp+r-\>        y    0    '

Proof. Notice that, for notational convenience, our matrix has a '0th' row and

a '0th' column.
Let Akp!r be the matrix defined in (4). We claim that

(*)
áetiAk,p,r) = -T^det4t+l,p+l,;-2

^ p+r'

which proves the lemma (by induction on p + r).

Given a matrix Akpr to see that the claim is true, just subtract (aa^°   =

{ZP++j) times the (i - l)st row from the ith row, and put the result into the

/th row. Since

(      k      \     P-' +l ( k \=       J       (      k+l      \
\P-i + j)     k-p + i\p-i + j+l)     k-p + iyp-i + j+lj'
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the new matrix has entries

bu = I

ii ,1 »

0,

i = 0,0<j<p + r,

l<i<p + r,j = 0,

\  -,—-:(        .+ .     ,)>    Ki,j<p + r,
Kk-p+i\p-i+j+lJ'       -        -

so that

detAk,Pir=(kp)det[bu]P+r= 0 detA k+l,p+l,r-2-

Lemma 4.2. Let m,n,k £JV, m < n . Then

m(n -k) if k <m-n,

(m + n-k)2    .. .     ,
-—   ifn + m-l>k>n-m

and m + n-k even,

(m + n-k + l)(m + n - k - 1)

4

ifn + m-l>k>n-m

and m + n-k odd,

Rank(Tm,n)k = {

0 if k > m + n - 1.

Proof. We divide the matrix (Cm<n)k into m blocks of n rows and denote by

ROW(7, J) the 7th row of the 7th block. The rows can then be divided into
m + n-2 equivalence classes {Rp}™^" where

RP = {R(I,J):I + J=p}.

We note that Rp has ap elements where

{j -I, j = 2, ... ,m,

m, j = m+l,... ,n + \,

m + n + l - j,    j = n+l, ... ,m + n,

and that the nonzero rows of (Cm<n)k are precisely those rows in the equiva-

lence classes R2, Rj,..., Rm+n-k ■

Similarly, by dividing (Cm,„)k into m blocks of n columns we define

COL(7, J) and the equivalence classes Cp (p = 2, 3, ... , m + n). (As before

Cp has ap elements.) It is easily seen that the nonzero columns of the elements

of the class Rj are precisely the elements of the class Cj+k . Thus {RP}p=2n is

a pairwise orthogonal set and

m+n—k

rank((Cm,n)k)=   £   dim(span(^))7.

7=2
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Now, let

Pj = min(a,, aj+k)

= min(number of elements of Rj, number of elements of Cj+k).

Since the matrix with rows equal to the elements of Rj contains a submatrix
of form (4) with p + r = p¡, we get

m+n-k

Rank((Cm,„)fc)=   Y,  PJ-

7=2

It is easily seen that

Pj J«),        2 < j
\ aj+k,    y<j

2<j<y,

where

y = <

n + l-k

m + n-k

otj+k ,    7 <J < m + n-k,

for k < n — m,

+ 1    for k > n - m and m + n-k even,

m + n - k + 1
for k > n - m and m + n-k odd,

and now a simple computation finishes the proof.

We will now prove Theorem 2.2(iii). Using Lemma 4.2 we see that, if we set

Kk = dim(ker(Tm,„)k) - dim(ker(rm,n)k~x), then

Kk= <

m

m +

l 0

k - (n - m)

ifl<k<n-m+l,

ifn-m + 2<k<m + n-l,

ifk>n + m-l,

where [r] = the greatest integer less than r for each real number r. Thus,

using equation (3),

'0   ifk<n-m+l,

1   ifn-m + l<k<n + m-l

and k - (n - m) odd,

0   ifn-m + l<k<n + m-l

and k - (n - m) even,

^ 0   ifk>n + m-l,

which finishes the proof.

# of blocks of size k
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