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ABSTRACT. Erdos and Lorentz showed that by considering the special kind of
the polynomials better bounds for the derivative are possible. Let us denote by
H, the set of all polynomials whose degree is n and whose zeros are real and
lie inside [—1, 1). Let P, € H, and P,(1) = 1; then the object of Theorem 1
is to obtain the best lower bound of the expression fi. |Py(x)IPdx for p>1
and characterize the polynomial which achieves this lower bound. Next, we say
that P, € Sx[0, oo) if P, is a polynomial whose degree is n and whose roots
are all real and do not lie inside [0, oo) . In Theorem 2, we shall prove Markov-
type inequality for such a class of polynomials belonging to Sz[0, o) in the
weighted L, norm (p integer). Here ||Pullr, = (fg* |Pa(x)Pe™ dx)/? . In
Theorem 3 we shall consider another analogous problem as in Theorem 2.

INTRODUCTION

Let H, be the set of all polynomials whose degree is n and whose zeros are
real and lie inside [—1, 1). Concerning this class of polynomials belonging to
H, we shall prove the following theorem.

Theorem 1. Let P, € H,, subject to the condition P,(1) = 1. Then we have (for
p21)

nbP
n-1p+1)’°

1
(L) [ PP dx >

with equality iff P,(x) = (4%)".

The case p =2 was considered in [5] and [8].
In 1964 G. Szego [6] studied the order of magnitude of ||P,||L../||PnllL.. for
unrestricted polynomials P, of degree < n for the norm

"Pn” = sup |P,,(x)e"‘|
x>0

on (0, co). More precisely, he proved the following
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Theorem A. Let P,(x) be a polynomial of fixed degree n and not vanishing
identically. Tken we have
1Pl <cn||Pall, n=2,3,....

In 1968, G. G. Lorentz [4] considered the problem of G. Szegd for the special
polynomials with positive coefficients in x

n
P,,(x)=2akxk, a,>0,k=0,1,...,n
k=0

and where the norm of a function P, on (0, co) is given by
[[Pall = sup| Py (x)e™ ")
x>0

where w(x) increases on (0, o).

Motivated by the theorems of G. Szeg6 [6] and Lorentz [4] and the earlier
result of the author [9] we shall consider the following problem concerning
the class of polynomials P € S,[0, co). Here let S,[0, co) be the set of all
polynomials whose degree is n and whose roots are real and do not lie inside
[0, 00). It is easy to see that if P, € S,[0, co), then it can be expressed in the
form

n
Pu(x) =) arx*, a>0fork=0,1,...,n.
k=0

Now, we state the following.
Theorem 2. Let

n
Po(x)=Y ax*, @ >0frk=0,1,...,n.
k=0
Then, we have for any positive integer p
Jo_ |Pa(x)Pe~ dx
fooo |Pn(x)|Pe—> dx
with equality iff P,(x) =ax.
It is of some interest to remark that the extreme value in the above inequality

is independent of the degree of the polynomials. In view of the above theorem,
we shall now prove

(1.2)

!
= p!

Theorem 3. Let P, € S,[0, o) and r, p be positive integers. Then we have (for
r<p)
oo r - |
(1.3) / Pl (x)xP-le— dx < PrEp =1 — 1)
0

(nr+p—1)

/ |Py(x)|"xP~le > dx
0
with equality iff P,(x) = ax™.

2. PROOF OF THEOREM 1

Let P, € H,, P,(1) = 1. We shall denote the zeros of P,(x) by x,, x,—1,
..., X2, X satisfying the inequality

(2.1) —1<x <xp1 < <X <X < 1




SOME INEQUALITIES OF ALGEBRAIC POLYNOMIALS 2043

We may express P,(x) by
(2.2) P,(x) = cﬁ(x —-xi), Py(l)=1.

Next, we note that
(2.3) P(x)>0, x;<x<1.
From (2.1)-(2.3) and

n
(2.4) PR = R0 Y 5 —
we obtain
(2.5) P(x)>0, x<x<I1.
Next, we note that for y >0 and p > 1 we have
(2.6) y-1>2py-1)

with equality only for y = 1 or for p = 1. Proof of (2.6) can be given
as follows. Consider (y >0,p > 1) p(y)=y?—1—-p(y—1). Then ¢(1) =
0,¢'(1)=0, ¢"(y) = p(p—1)y?~2 > 0. Therefore, by using Taylor’s Theorem,

we have Iy
o) =0(1) + = Do'() + 9" &L
pe = 1)? — 1)Er2(y — 1)2
— (é)(y - ) _plp )62 =05,
(¢ being between y and 1).
From this (2.6) follows. Next, we put
_ Fx)
T nPy(x)

X—Xn
in (2.6). Then we have (x; < x < 1) after some simplification
' pnP~ P (x)(Pa(x))P~!
P> n
(B()P 2 S

(Pa(x))P
BT a T

/l " (x)Pdx > pnP~! / Pa () (Pu(x))"”! dx

(x — xp)P~!

_(p_l)np/'de_

(X = xn)?

Clearly, then

(2.7)

Next, we note that

VP x)(Pa(x))Pt M d 1
1)/)rl X = x, )] dx—/xl (ZE(P"(X))D) T dx

: (Pn(x))?
X (X _xn)p

(Pa(1))”

= [T ax.

+(-1)
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Therefore, from (2.7) and above we obtain

1
|P,:(x>|de2nﬂ-l{(1 4 (- ) / Al );)n))pd}

Xy

2.8 Cin 1y [ Pa(x))?
(2.8) p-1n . (x—x,,)l’dx
_m e, _ /(Pn(X))
Z(l—xn)p—l wn =1 - 1) X1 (x xn)pdx
Since
0<x—-—x<x—-Xxp, k=1,2,...,n, x<x<1,
we have

n p
(PyX))P = (Pu(x)) (Z . _‘xk)

From above and (2.8) we obtain
(2.9) n? /x | ((f"(’;)") dx < / :(P,’,(x))” dx
and
/x:(P;(x))” dx 2 o _";;p_l - Up- D /x:(P,;(x))” dx

with equality iff P.(x) = 22X and x, =—-1,p>1.

X—Xpn
From the above (1.1) follows. Thus, we have proved Theorem 1.

3. PROOF OF THEOREM 2
We set
n
P,,(x)=Zakx", a>0,k=0,1,...,n,

and note that P,E') (x) is a polynomial of degree < n—r in x with nonnegative
coefficients. If we denote

n
Py(x) =ag + ra(x), aozo,r,,(x)=2akxk, a >0,

then we notice that
[y (Pax)Pe dx _ [°(ry(x)ye dx

D I (Pa(x)pe=xdx = [ (rm(x))Pe—>dx’

Therefore, in order to prove Theorem 2 it is enough to consider the class
of all polynomials P,(x) of degree < n in x with nonnegative coefficients
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subject to the condition that P,(0) = 0. Next, we note that P,f') (x) >0, for
0<x<o,and

/0 " (PP (Pa(x)) e dx
= [7 BB By e
0

== [ BB B e R PP
+ (p —-r- 1)(P':(x))P—’—ZP'/l/(x)(Pn(x))re_x] dx.

From above, we may conclude that
(r+1) [ EPBx)ye dx
0
= [ Eep Ry dx
0
+(r+1-p) /OOO(P,Q(x))”"'zP,','(x)(Pn(x))’e"‘ dx

< / TP Py e dx (P2 1)
0

with equality iff P,(0) =0 and P)/(x) =0.
Putting r=0,1, ..., p—1 we obtain
| euxpeax < o [“(iiyeax
0 P Jo

with equality iff P)(x) =0 and P,(0)=0.
From this the proof of Theorem 2 is complete.
4. PROOF OF THEOREM 3

Let x,, x2, ..., X, be any real zero of P, € S,[0, 00). Then x; <0,k =
1,2,..., n. Also, using Turan’s identity [7] we have

(4.1) (B = PuOBY(6) = (8o Errt
Therefore we obtain

XBL) — Pa)PL(0)] = P2() 3 X2t
k=1

(x — xx)?
(4.2)

<P Y oo = PP
k=1

Since P, € S4[0, 00), it follows that P{”(x) >0 for 0 < x < co.
We now claim that (j+1<r<p)

/0 " B0y (Pa(x)YxPNeF dx
(4.3)

n faly —ie ] ool
: (n—l)r+p+j/o (Pa(0) /= (Pu(x))* 1 xP~ e dx.
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First we note that for j+ 1 < r < p we have
L= [ BBy dx
= /0 oo(P,',(x))"j TH(Pa(x)) xP e X ((Py(x))? = Pa(x) Py (x)) dx
+ [Ty Ay e B ) d
using (4.2), we have

LS [y By x e dx

(4.4) o

# [Ty B e () d
0

Next, we observe that
(4.5)
(o o)

[ By my et dx
0
=; —11'— 1 /0 di‘ (Py(x)) ™~ (o)) xP~ e~ dx

1 & oo
=== [, aey !
x {—e S P+ (p = a2 X (By())

+ (J + 1)(Pa(x)) Pi(x)xP e *}dx.

From (4.4) and (4.5) we obtain

s [ B By rte dx
0

+ r—j — / (Ph(x)) /=Y (Py(x))* e *xP 1 dx
r_} — l P(x)) I (Py(x))/H xP 26~  dx
__J+! .
r—j-lLJ

From above, we obtain

rhys-p-J) | T B0y P x)) X2 dx
(4.6) 0

+ [T By By e dx
0

Next, we note that

(n=1)r+j+1
(4.7) (P T Ba(x)Y = Y bexF, B 20.
k=1
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Therefore,
[ By iy le dx
0
(n=1)r+j+1
= Z bk/ xk+p—le—x dx
(n— l)r+j+l
= Y blk+p-1)
k=1
and
00 ) (n—1)r+j+1
/0 (PL(x)) I~V (Py(x))* ! xP~2e~* dx = Z bi(k +p —2)\.
k=1

From these two relations, it follows that

/ " L)Y (Ba(x)) X e dx

(4.8) 0 oo

<((n-1)r+j+p) / (P ()~ (Py(x) P26~ dx
0

Therefore, using (4.8) and (4.6) we obtain
o< (1 Gy ) ROy e
= n / T (P (P () P e dx
(n -Dr+j+pJo " " )

From above, (4.3) follows, for j+ 1 <r<p.
The proof of (4.3) for j + 1 =r is as follows. From (4.8) we have

/OO(P,,(x))’x"“e‘x dx<(nr+p-1) /OO(P,,(x))'x”‘ze"‘ dx.
0 0

Also
[ B oyxete

= / PL(x)(Pa(x)) " 'xP~le > dx
0
1 o0

— _i ryp—1,—-x
__/0 (R (x)Y X e dx

r

=1 (B et - Da e dx

l—_l_)__._l.__ = ryp—1,—x
<(3-32507) [ ptoyeteax

— n ® ry.p—1,—x
__nr+p—1/o (Pa(x))'xP'e > dx.
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From (4.3), we have (j+1<r<p)
Iy (Pa(x)yxr~le % dx
Jo~ (Pu(x)rxp=le=x dx
(4.9) < "
“n=Dr+pliin-=Dr+p+1]---[(n—-r+p+r—1]
n"(nr+p—r—1)!
(nr+p-1)!
((4.9) become an equality for P,(x) = ax").
This proves Theorem 3 as well.
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