
proceedings of the
american mathematical society
Volume 123, Number 7, July 1995

PREFERENCE RELATIONS AND MEASURES
IN THE CONTEXT OF FAIR DIVISION

JULIUS B. BARBANEL AND ALAN D. TAYLOR

(Communicated by Andreas R. Blass)

Abstract. One of the most well-known metaphors in the mathematical theory

of fair division concerns the problem of dividing a cake among n people in such

a way that each person is satisfied with the piece he or she receives, even though

different people value different parts of the cake differently. Our concern here

is with how an individual's preferences are formalized. David Gale has pointed

out that although most of the deeper results in the field assume that preferences

are given by an additive measure, the fundamental algorithms in the field re-

quire only that preferences be given by a binary relation satisfying a few natural

properties. We introduce here one additional condition—an Archimedean prop-

erty that obviously holds if the relation is induced by a measure—and we show

that a preference relation satisfying Gale's conditions is induced by a finitely

additive measure if and only if it satisfies this Archimedean property.

Introduction

Suppose sA is an algebra of subsets of the set C. A preference relation

(R) on Jp/ is a binary relation, defined for pairs of sets from sé, that is

reflexive, transitive, and complete (on sA). If R is such a relation, then the

corresponding relations of indifference (I) and strict preference (P) are given

by

(i)   X I Y iff X R Y and Y R X, and
(ii)   X P Y iff X R Y and XIY.

It is easy to see that the indifference relation I and the strict preference relation
P must also be transitive. The term "indifferent" is suggestive when one thinks

of the preference relation as reflecting the tastes of an individual, but even here

it really corresponds to a property of the person and not to a property of the

pair of sets. In order to avoid speaking of two sets as being "indifferent", we

will often use the term equivalent in place of indifferent.

The context in which we are interested arises from the well-known problem
of fair division that is usually phrased in terms of a cake metaphor. That is,
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suppose we have a cake C and n people who value different parts of the cake

differently. Is there a way to divide the cake among the n people so that each

person is satisfied with the piece he or she receives? Expository treatments of
this problem can be found in [DS] and [BT].

Satisfaction may be defined, of course, in several different ways. For exam-

ple, one might be satisfied only if he or she received at least l/n of the cake

("proportionality") or only if he or she would not trade that piece for the one

received by someone else ("envy-freeness").

The real issue we want to confront here, however, lies with the phrase "who

value different parts of the cake differently". Economists have traditionally dealt

with the context in which the cake corresponds to a finite collection of divisible

homogeneous goods, while mathematicians have dealt with the context in which

it corresponds to a single divisible heterogeneous good. We are interested here

only in the latter. But even in this context there is the fundamental distinction,

explicitly pointed out by Gale [G], between the context in which these "values"

are formally represented by a preference relation and the context in which they

are represented by a finitely or countably additive measure. Continuing along

the lines suggested by Gale, we make

Definition. Suppose   R   is a preference relation defied on an algebra si of

subsets of C. Then   R   will be called a CD preference relation (" CD " for

"cake-division") if C is strictly preferred to the empty set and the relation  R
satisfies the following three postulates:

(1) The Partitioning Postulate (PP). If X esA and k is a positive number,

then X can be partitioned into k pairwise disjoint equivalent sets which are
in sA .

(2) The Trimming Postulate (TP). If X is preferred to Y, then there exists

a subset Z of X which is equivalent to Y and in sé .
(3) The Weak Additivity Postulate (WA). If X is preferred to Y, A is

preferred to B , and X and A are disjoint, then XliA is preferred to YliB. If
either of the two preferences in the hypothesis is strict, then so is the preference
in the conclusion.

Our definition of a CD preference relation has the "more is better" property

built into it in two places: the assertion that C is strictly preferred to the empty

set and the requirement in Weak Additivity that X and A be disjoint but not

necessarily Y and B. If we wished to depart from the cake-cutting tradition,

then mathematical naturality would suggest that we state WA with disjointness

for both pairs and require only that C not be equivalent to the empty set. One

could then define an "upward monotone CD preference relation" as one for

which X c Y implies Y R X and a "downward monotone CD preference

relation" as one for which X c Y implies X R Y. Both kinds of monotone

relations can be obtained by a measure in the obvious way, although it is easy

to construct preference relations that satisfy neither kind of monotonicity. For

example, if {A, B} is a partition of C and p is a measure on C giving
positive measure to both A and B, then we could say X R Y holds precisely

when p(Xf]A)-p(Xr\B) > p(YnA) -p(YnB). It is easy to see that this is an

example of what one would call a nonmonotone CD preference relation. Our

results directly apply to the upward monotone case and can be adapted easily

to the downward monotone case.
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If i? is a CD preference relation, then an equipartition J" of a set X is

a partition of X into pairwise equivalent sets. (Here, and in all that follows,
we will assume that all sets mentioned belong to some common algebra sé on

which all the preference relations under discussion are defined.)
The following notion is central to our considerations.

Definition. Suppose R is a CD preference relation defined on an algebra sé of

subsets of C. Then a set X e sé will be called an infinitesimal if X is strictly
preferred to the empty set but every set Y e SA is preferred to X whenever

SA is a finite equipartition of C (regardless of the number of sets in SA).

If p is a finitely additive measure on some algebra sé of subsets of C,

then one can define a preference relation R on sé by setting X R Y iff

p(X) > p(Y). If the measure satisfies the obvious analogues of the Partitioning

Postulate and Trimming Postulate, then R is a CD preference relation. It is,
of course, trivial to see that such a preference relation cannot have infinitesimals.

This leads to

Definition. A CD preference relation  R  defined on the algebra sé of subsets

of C will be called an Archimedean CD preference relation if it also satisfies:

(4) The Archimedean Postulate (AP). There are no infinitesimals.

Gale [G] introduced versions of the first three postulates above to under-

score the point that, although much of the research in the area of cake division

has been in the context of finitely or countably additive measures, the classic

algorithms in the area (e.g., those of Steinhaus, Banach-Knaster, and Selfridge-
Conway—see [BT]) require only (what we are calling) CD preference relations.

Our goal in what follows is to show that, in one sense, this added generality

is somewhat illusory, although, in another sense, perhaps quite fundamental. In

particular, we prove

Theorem 1. If R is an Archimedean CD preference relation on sé , then there

exists a finitely additive measure p on sé so that X RY holds precisely when

p(X)>p(Y).

Theorem 2. There exists a CD preference R that is not Archimedean (and hence

does not arise from any measure).

Proof of Theorem 1

The basic idea of the proof of Theorem 1 is as follows. The Partitioning

Postulate allows us, for any «, to split C into « equivalent pieces. If the

preference relation is to be induced by a finitely additive measure, then each

such piece must have measure 1/n, and the union of any r of these pieces

must have measure r/n . However, if a set X is assigned measure r/n on the

basis of one such partition, then there may exist (in fact, certainly do exist)

other partitions of C that would force this same set X to be assigned measure

s/m . What must be shown is that this happens if and only if rm = sn . This

is done in Lemma 4 below.

The construction in the previous paragraph yields a collection 31 of sets X

to which we can assign a rational number p*(X) as measure. On the sets in
32, this measure faithfully represents the preference relation (Lemmas 5 and

6) and is finitely additive (Lemma 7).
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The measure p* is extended to the rest of the sets in the algebra on which the

preference relation is defined by mimicking inner and outer Lebesgue measure.

For example, the outer measure of a set is defined to be the infimum of the

measures of all sets in 32 which are preferred to the given set. We show that

the inner and outer measures coincide (Lemma 9), that the resulting measure

is finitely additive (Lemmas 15 and 16), and that it does, indeed, represent the

preference relation with which we started (Lemmas 12 and 18).

Before getting to the details of the proof of Theorem 1, we introduce some

terminology. If R is a CD preference relation and SA is an equipartition of

some set X, then we let \Sf\ denote the number of sets in SA, and we write
"¥ e [SA]r" to indicate that f is a subcollection of SA of size r.

In the lemmas that follow, we will say that X is preferred to Y if X R Y

holds, that X is strictly preferred to Y if X P Y holds, and that X is equiva-
lent to Y, denoted X = Y, if X R Y and Y R X.

Lemma 1. (i) (Monotonicity) If X d Y, then X RY.
(ii) If Sf is an equipartition of X and f' ,y e {SAY, then \}f = \jy .
(iii) If X P 0 and SA is an equipartition of X, then Y P 0 for every

Y eSA.
(i\)IfX = Y, then C-X = C-Y.

Proof, (i) Assume, for contradiction, that we have X D Y and Y P X. Then,

by WA, we have [Y u (X - Y)] P [X u (X - Y)] since Y n (X - Y) = 0.
Hence, X P X, contradiction. Assertions (ii), (iii), and (iv) follow from WA

in a similar fashion.

Lemma 2. If SA is an equipartition of X and r, s < \SA\, then the union of r

sets from Sf is strictly preferred to the union of s sets from SA iff X P 0 and

r> s.

Proof. Notice first that by Lemma 1 (ii) the quantifiers in Lemma 2 can be taken

to be either existential or universal. The right-to-left direction is an immediate

consequence of Lemma 1 (iii) and WA. In the left-to-right direction, notice that
X P 0 follows from monotonicity. Moreover, r > s follows because s > r

would contradict monotonicity and Lemma l(ii).

Lemma 3. For any X e sé and natural numbers n and r, the following are

equivalent:
(1) There exists an equipartition Sf of C of size n, and there exists a col-

lection y e [Sf]r such that X = \\y.
(2) There exists an equipartition SA of C of size n, and there exists a col-

lection f/ e {SAY such that X = \Jff.
(3) For every equipartition Sf of C of size n and every collection y e {SAY,

we have X = \]j/.

Proof.  (l)-+(2): Trivial
(2) —> (3) : Suppose SA is an equipartition of C of size n, and suppose

y e {SAY and x = U fA • Suppose SA' is another equipartition of C of size
n , and suppose y e {SA'Y ■ If some set in Sf were strictly preferred to some
set in Sf', then transitivity would imply that every set Sf is strictly preferred

to every set in Sf'. It would then follow from WA that C P C, which is not

true. Similarly, no set in Sf' can be strictly preferred to any set in Sf. Thus,
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every set in y is equivalent to every set in y , so, since \y\ = \y\, we have

\}f = \JfA' by WA. Thus X = \jy , as desired.
(3) —> (1) : By PP, there exists an equipartition SA of C of size n . Choose

y e {SAY. By (3), we have X = \jy, and by Lemma l(iv) C - X =
\J(Sf - y). Now let 3A be an equipartition of X of size r, and let W

be an equipartition of C - X of size n-r. Notice that if A e Z, Bey,

EeSf-y, and FeW, then A = B and E = F by WA. But B
and E come from the same equipartition. Thus, B = E, so, by transitivity,

A = F. This implies that Z U W is also an equipartition of C of size n ,

Z e {Z U WY , and X = \J3T.
If any (and hence all) of the conditions in Lemma 3 hold, we will say that

(r, n) is good for X. It will turn out that (r, n) is good for X iff the measure

of X is r/n.

Lemma 4. Both (r, n) and (s, m) are good for some set X iff rm = sn.

Proof. Suppose first that (r,n) and (s, m) are good for some set X and X

is not strictly preferred to the empty set. Then both r and 5 must be zero,
so rm = sn, as desired. If (r, n) and (s, m) are good for X and X is

strictly preferred to the empty set, then we let Sf be an equipartition of C of
size mn. By WA, a clumping together of blocks of size n from Sf yields

an equipartition of C of size m , and a clumping together of blocks of size m

from Sf yields an equipartition of C of size n . Thus, X is equivalent to the

union of r blocks of size m and the union of s blocks of size n . By Lemma

2, rm = sn , as desired.

For the converse, suppose rm = sn and let Sf be any equipartition of C

of size mn . Let X be the union of any rm sets from Sf. Then a clumping

together blocks of size m in the obvious way shows that (r, n) is good for X,
and a clumping together of blocks of size n (again in the obvious way) shows

that (s, m) is good for X.
Let the collection 32 c sé be defined by:

X e32   iff   (r, n) is good for X for some r and « .

Now set p*(X) = r/n whenever X e 32 and (r, n) is good for X. Lemma 4

ensures that p* is well defined. The next few lemmas show that p* is finitely

additive and that, for sets X,Y e32 , X RY holds iff p*(X) > p*(Y).

Lemma 5. If X, Y e32 and X RY, then p*(X) > p*(Y).

Proof. By getting a common denominator, we can assume p*(X) = r/n and

p*(Y) = s/n . Let Z be an equipartition of C of size n . Choose Sf e {ZY

and y e {Z\s. Then X = \]Sf and Y = \jy, so (\JSf) R (IJ JO » Thus
r > s by Lemma 2, since C P 0 .

Lemma 6. If X, Y e 32 and p*(X) >p*(Y), then X RY.

Proof. Assume again that p*(X) = r/n and p*(Y) = s/n and let A2A be an
equipartition of C of size n. Choose SA e {ZY and y e {Z]s. Then

X = \JSf, y = \jy, and, since C P 0 and r > 5, we have, by Lemma 2,
(\JSf)R({jy),so XRY.

Lemma 7. If X, Y e32 and XC\Y = 0, then p*(X) + p*(Y) = p*(XU Y).

Proof. Assume p*(X) = r/n and p*(Y) = s/n , and let A£ be an equipartition

of C of size n . If r + s > n , then choose Sf e {Z]r and let y = Z - Sf.



2066 J. B. BARBANEL AND A. D. TAYLOR

Then X = \JSf and Y P \jy by Lemma 2. Hence (XuY)P (jZ by WA.
But \JZ = C, so this is impossible. Thus, r + s < n. Let y e {Z]s such

that Sfr\y = 0. Then Sfuy shows (r + s, n) is good for XöY, and
hence, p*(X uY) = (r + s)/n .

Lemma 8. If X, Y e 32 and p*(X) + p*(Y) < 1, then there exists X',Y' e32
such that X = X', Y = Y', and X' n T' = 0.

Proof. Assume p*(X) = r/n and p*(Y) = s/n. Then r + s < n. Let Z be

an equipartition of C of size n , and choose Sf e {ZY and y e {ZY such

that Sf r\y = 0 . Let X' = \]Sf and Y' = \]y .
In order to extend p* to a measure defined on all of sé, we define the

following analogues of inner and outer Lebesgue measure: For Y e sé, the

inner measure of Y, denoted p¡(Y), and the outer measure of Y, denoted

Po(Y), are given by

Pi(Y) = sxxp{p*(X): YRX}   and   p0(Y) = inf{p*(X) : X RY}.

Lemma 9. For every Y ese , p¡(Y) = p0(Y).

Proof. Suppose first that we have p¡(Y) < p0(Y). Then we could choose a

fraction r/n so that

p,(Y) < r/n < p0(Y).

Choose X so that p*(X) = r/n. Since R is complete, either Y R X or

X RY holds. In the former case, we have p¡(Y) > r/n . In the latter case, we

have Po(Y) < r/n . Both are impossible.
Suppose now that we have p0(Y) < p¡(Y). Then we could choose X"

(from the collection of sets involved in the inf that gives us the outer measure

of Y) and X' (from the collection of sets involved in the sup that gives us the

inner measure of Y) so that X" R Y, and YRX', and p*(X") < p*(X').
But then we have X" R X', while Lemma 5 immediately implies that since

p*(X") < p*(X'), we have X' P X" . This completes the proof of Lemma 9.

The desired measure p on the algebra sé is now obtained by setting p(Y)

to be the common value of the inner and outer measure of Y. It remains only

to show that p is finitely additive and that it induces the preference relation

with which we started.

Lemma 10. If X n Y = 0, p(X) + p(Y) < 1, and e > 0, then there exists

X',Y' e32 such that

(i)   X'C\Y' = 0,

(ii)   X' RX and Y' RY, and
(iii)   p'(X') < p(X) + e and p*(Y') < p(Y) + e.

Proof. Without loss of generality, assume that p(X) + p(Y) + 2e < 1. Since

p = p0 , we can choose X" ,Y"e32 so that

(i)   X" R X and Y" R Y , and
(ii)   p*(X") < p(X) + e and p*(Y") < p(Y) + e .

Notice that p*(X") + p"(Y") < p(X) + p(Y) + 2e < 1, and so Lemma 8
guarantees the existence of X', Y' e 32 such that X' = X", Y' = Y", and
X'nY' = 0. But then p'(X') = p*(X") and p*(Y') = p*(Y") by Lemma 5.
Thus X' and Y' are as desired.



PREFERENCE RELATIONS AND MEASURES 2067

Lemma 11. If X n Y = 0, p(X) + p(Y) < 1, and e > 0, then there exist
X',Y' e32 such that

(i) x'nY' = 0,
(ii)   XRX'andYRY', and

(iii)   p*(X') > p(X) - e and p*(Y') > p(Y) - e.

Proof. Since p = p¡, we can choose X" ,Y"e32 so that

(i)   X R X" and Y RY", and
(ii)   p(X) > p*(X") > p(X) - e and p(Y) > p*(Y") > p(Y) - s.

Notice that p*(X") + p*(Y") < p(X) + p(Y) < 1 by assumption. Hence,

Lemmas 8 and 5 yield the desired result as in the above lemma.

Lemma 12. If X R Y, then p(X) > p(Y), and so, if X D Y, then p(X) >

P(Y).

Proof. Immediate, since X R Y implies the inner measure of X is at least

as large as the inner measure of Y.   The last clause follows from this and

monotonicity.

Lemma 13. For X esé , p(X) + p(C - X) = 1.

Proof. We have

p(X) = pi(X) = sup{p*(Z) :X RZ}

= sup{p*(Z) :(C-Z)R(C- X)} = sxxp{p*(C - Z) : Z R (C - X)}

= sup{l - p*(Z) : Z R (C - X)} = 1 - inf{p*(Z) : Z R(C-X)}

= 1 - Po(C - X) = 1 - p(C - X).

Thus, p(X) + p(C-X) = l.

Lemma 14. If X n Y = 0, then p(X) + p(Y) < 1.

Proof. Since X n Y = 0, we have Y c C - X. Thus, p(Y) < p(C - X)
by Lemma 12. It now follows from Lemma 13 that p(X) + p(Y) < p(X) +
p(C-X) = l.

Lemma 15. If X n Y = 0, then p(X U7)> p(X) + p(Y).

Proof. Assume X n Y = 0 and e > 0. By Lemmas 14 and 11, we can choose
X', F' € 32 such that

(i)   X'C\Y' = 0,

(ii)   X R X' and Y RY', and
(iii)   p*(X') > p(X) - e/2 and p*(Y') > p(Y) - e/2.

By (i) and Lemma 7, p*(X' U Y') = p*(X') + p*(Y'). By (ii) and WA,
(X U Y) R (X' U Y'). Thus, by Lemma 12, p(X U Y) > p(X' U Y'). This
yields

p(X U Y) > p(X' U Y') = p*(X' U Y') = p*(X') + p*(Y') > p(X) + p(Y) - e.

Since this is true for every e > 0, we have p(Xl)Y) > p(X) + p(Y), as desired.

Lemma 16. If X n Y = 0, then p(X UY)< p(X) + p(Y).

Proof. Assume X n Y = 0 and e > 0. By Lemma 14, p(X) + p(Y) < 1. If
p(X) + p(Y) = 1, the conclusion is trivial. Otherwise, Lemma 10 allows us to
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choose X', Y' e 32 such that

(i) X'nY' = 0,
(ii)   X' R X and Y' RY, and

(iii)  p'(X') < p(X) + e/2 and p*(Y') < p(Y) + e/2.

By (i) and Lemma 7, p*(X' u Y') = p*(X') + p*(Y'). By (i), (ii), and WA,
(X' U Y') R(Xl)Y). Thus, by Lemma 12, p(X' U Y') > p(X U Y). This yields

p(X U Y) < p(X' U Y') = p*(X' U T')

= p*(X') + p*(Y')<p(X) + p(Y) + e.

Since this is true for every e > 0, we have p(Xl)Y) < p(X) + p(Y), as desired.

Lemma 17. If T P 0, then p(T) > 0.

Proof. If T P 0 , then the Archimedean Postulate AP guarantees that T R X

for some X with p*(X) = l/n for sufficiently large n . Lemma 12 now guar-

antees that p(T) > p(X) = p*(X) > 0. Notice that this is the first time we

have had to appeal to the Archimedean Postulate.

Lemma 18. If p(X) > p(Y), then X RY.

Proof. Assume Y P X. By the Trimming Postulate TP, we can choose T c Y
so that Y -T = X, and, thus, by Lemma 12, p(Y - T) = p(X). By WA,
T P 0, so, by Lemma 17,  p(T) > 0.   Lemmas 15 and 16 now yield that
p(Y) = p(Y -T) + p(T) = p(X) + p(T) > p(X), as desired.

Notice that a consequence of the fact that we needed the Archimedean Pos-

tulate only for the proof of Lemmas 17 and 18 is that we immediately obtain

the following:

Corollary 1. If R is a CD preference relation on sé, then (even if R is
not Archimedean) there exists a finitely additive measure p on sé such that if

ARB, then p(A) > p(B). Thus, if we have A = B, then p(A) = p(B).

As pointed out by the referee, mathematical economists refer to a function

u : sé —► R as a utility for a preference relation R if for all X, Y e sé we

have u(X) > u(Y) whenever X RY, and a utility representation for R if

we have u(X) > u(Y) precisely when X RY. Thus, Theorem 1 asserts the

existence of an additive utility representation for an Archimedean CD rela-

tion, while Corollary 1 asserts the existence of an additive utility for even a

nonArchimedean CD relation.

One should note, however, that if the CD preference relation R in the

Corollary is not Archimedean, then the measure p obtained in the proof of

the theorem will be such that for some pair of sets A and B one has A P B

even though p(A) = p(B). Intuitively, one can think of A as being preferred

"infinitesimally" to B. Notice that any set of measure zero that is strictly

preferred to the empty set must be an infinitesimal.

In [BT], a constructive procedure is given for obtaining an envy-free alloca-

tion of a cake C among n players when each player's preferences are given by

a finitely additive measure defined on some algebra sé of subsets of C. The

question of whether or not such a procedure exists (for n > 3) in the case where

preferences are given by CD preference relations is open. The above corollary,

however, allows us to obtain the following partial result in the positive direction.
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Corollary 2. Given n players whose preferences over subsets of C are given

by CD preference relations, there exists an ordered partition {Xx, ... , X„} of
C that is "infinitesimally close to being envy-free". That is, for each i there
is a set S¡ that Player i thinks is an infinitesimal, and he or she regards

{Xx - S¡,..., X„ — S¡] as an envy-free allocation of C - S¡.

Proof. Given CD preference relations i?i,... , Rn on some algebra sé of

subsets of C, let px, ... , pn be the measures guaranteed to exist by Corollary

1. Now apply the envy-free procedure from [BT] to obtain the ordered partition

{Xx, ... , X„} with Pi(Xj) > Pi(Xj) for every i, j. Assume that Player /
experiences some envy. Then we have X¡ P¡ X¡ for some j. Proceeding as in

the proof of Lemma 18, we can use the Trimming Postulate TP to get 7) c X¡

so that Xj - Tj =i Xi. Thus, pt(Xj -Tj) = pt(Xi) > pj(Xj). Thus, p¡(Tj) = 0,
so, since Tj is strictly preferred to the empty set (by WA), we have that Tj is

an infinitesimal (according to Player i). It is easy to see that a finite union of
infinitesimals is again an infinitesimal. Thus, we can let S¡ be the union of all

the sets Tj.

Proof of Theorem 2

Our construction of a CD preference relation that does not satisfy the

Archimedean Postulate will proceed by amalgamating preferences in a way that

ultrafilter-theorists will find familiar. The "cake" will be a subset of the plane

(which could be taken to be compact by trivial modifications of what we are

about to do).
For each n e N, let C„ be the open disk of radius 1 /2 centered at the point

(n, 0) on the x-axis, and let C be the union of this infinite collection of disks.

Let p denote Lebesgue measure in the plane, and let sé denote the algebra of

Borel subsets of C. Let % be any nonprinciple ultrafilter on N, and for any

subset X of C, let X„ denote X nCn.
We can now define the desired preference relation for pairs of sets from the

algebra sé as follows: if X, Y e sé , set

X RY   iff   {n e N : p(Xn) > p(Yn)} e %.

Notice that

X=Y   iff   {ne N:p(Xn) = p(Yn)}e%

and

XPY   iff   {ne N:p(Xn)> p(Yn)}eíA.

It is trivial to check that R is reflexive, transitive, and complete. The

Partitioning Postulate holds, since for any X e sé and any k e N we can
partition each "piece" X„ of X into k sets of equal Lebesgue measure. The

verifications of the Trimming Postulate and the Weak Additivity Postulate are

just as easy.

To see that the Archimedean Postulate fails, choose, for each n e N, a set

X„ c C„ of Lebesgue measure l/n. Let X be the union of the XAs. Then
X is strictly preferred to the empty set. However, if we partition C into k
equivalent sets, then, for all « in a set in ^, we have that each of the k sets

intersects C„ in a set of Lebesgue measure l//c. Since l/k is larger than the
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Lebesgue measure of Xn for all but finitely many such n , we have that each of

the k sets is strictly preferred to X. This completes the proof of Theorem 2.
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