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Abstract. On an odd-dimensional manifold with isolated conical singularities,

we perturb a Dirac operator by a vector bundle endomorphism whose pointwise

norm grows in inverse proportion to the distance from the singular set. We

give two proofs of an index formula for the resulting Fredholm operator. We

mention an application to the index theory of transversally elliptic operators.

Introduction

In this paper we describe a class of Fredholm perturbed Dirac operators on

odd-dimensional manifolds with isolated conical singularities, we prove an in-

dex theorem for these operators, and we indicate an application of this index

theorem. The analysis of these operators is based on the theory of regular sin-

gular operators [BS1]. The perturbations used are invertible in a neighborhood

of the singular set. In a neighborhood of the singular set, each perturbations

pointwise norm grows in inverse proportion to the distance from the singular

set.

Section one of this paper describes the perturbed Dirac operators that we use
and establishes their properties. Section two proves an index formula for these

operators. A remark at the end of the second section indicates a framework

in which this index formula can be applied to the index theory of transversally
elliptic operators. We plan to discuss this subject more thoroughly in other

papers.
We believe that the significance of this paper lies in noting two roles played

by operators of the type we consider: they provide computable index invariants

for some transversally elliptic operators; and they establish common ground

between index theory on incomplete manifolds and index theory on complete

manifolds. Our first interest was in establishing and applying a computable in-

dex formula for the perturbed Dirac operators described here. We then noticed
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similarities with some index results arising on complete manifolds. (Of course

we are not the first to notice similarities of this type. The techniques of [B1 ] and

[B2] are based on identifying and using such similarities to prove index theorems
on complete manifolds.) To illustrate two points of view on the relationship

between index theory on complete manifolds and index theory on incomplete

manifolds, we offer two proofs of the index theorem for the perturbed Dirac

operators we study. One proof, based on the general form of the index theorem

of [BS1], relative index theory, and explicit solution of regular singular differen-

tial equations, follows closely the proof appearing in [A] for a class of examples
on complete manifolds. The other proof, based on the index theorem of [BS1]

and the adiabatic limit calculations of [BiC], also has analogues in index theory

on complete manifolds [BM]. Hence we hope that our paper will play a part in

unifying the index theory of Fredholm elliptic operators on complete manifolds

and the index theory of such operators on incomplete manifolds. We believe

that the presence of a perturbation that is invertible and unbounded at infinity

will be central to the strongest forms of such a unified theory. For a perspective

on the role played by such a perturbation in the complete case, see [Ga].

1. Regular singular perturbed Dirac operators

In this section we define and describe the properties of the perturbed Dirac
operators that are the subject of this paper.

Let M be the set of smooth points of a compact space with isolated metri-

cally conical singularities. M is an incomplete smooth Riemannian manifold

that is divided by a submanifold N into two parts: a compact manifold with

boundary, where N is the boundary; and a finite-length metric cone over N.

This cone equals, for some positive p, {(r, n): 0 < r < p, n £ N} with

Riemannian metric dr ®dr + r2gN . Here gn is a Riemannian metric on A^.

We denote this cone by Co,p(N). M is the union of these two pieces modulo

identification of each point (p, n) in the cone with the corresponding point n

in the boundary of the first piece.

Assumption 1.1. Throughout the first three sections of this paper, we assume
that M is as above. Moreover we assume that M is an odd-dimensional spin
manifold. We fix a spin structure.

Notation 1.2. Let 5) be the Dirac operator defined on sections of the spinor
bundle S —> M. Assume for now that the domain of £> is the set of smooth

compactly supported spinors. The domain of 2) will not play an important

role in this paper. Let S denote the Dirac operator on the bundle of spinors

S^N on N.

Remark 1.3 [BS1], [BS2], [C2], [C3], [C4], [Chi], [Ch2]. Because M is incom-
plete, 33 may fail to be an essentially self-adjoint operator on the Hubert space
of L2 sections of S. However, when T) has self-adjoint extensions, their spec-

tra are similar in many ways to the spectrum of a Dirac operator on a compact
manifold without boundary.

Notation 1.4. Let Tí be a Hermitian vector bundle over M. We assume that

over the cone E 's structure behaves as the product of (0, p] with the structure

of a bundle E —> N. Thus we fix an identification

E\c0.p(N) = (0,p]xE.
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Notation 1.5. Let 2t be a smooth vector bundle endomorphism of E. We

assume that over CoiP(N), 21 has the form

2t = r_1ä

where ä is a smooth invertible self-adjoint vector bundle endomorphism of E.

Notation 1.6. Choose a metric connection on E that is flat in the radial di-
rection on the cone and that decomposes over the cone into the direct sum of
connections on the two subbundles associated with the positive and negative

eigenspaces of 21. Using the tensor product connection on S ® E, we can de-

fine a Dirac operator on smooth compactly supported sections of S <8> E. We

denote both this operator and its closed extensions by D. We denote by A the

operator I ® 21 on (sections of) S <8> E. Let S —» N denote the spinor bundle

over N. Let D denote the Dirac operator on sections of S®E. Let A denote

the operator I ® 2Í on sections of the same bundle.

Notation 1.7. Let X denote the operator on sections of S\c0 p(n) associated with

left Clifford multiplication by the volume form of N. (A volume form includes

a factor of an appropriate power of i. See, e.g., [L].) We orient N so that the
tangent vector pointing towards the cone tip followed by the orientation of AT

agrees with the orientation of M. By slight abuse of notation, let X also denote
the operator that is really X ® I on sections of S ® E over the cone.

Lemma 1.8. Let 33 denote the Dirac operator on the bundle of spinors S over N.

Under the natural unitary identification of the restriction to the cone of L2(S),

respectively L2(S ® E), with the Hubert space of L2 functions on (0, p] with

values in L2(S), respectively L2(S <g> Ë), 33 is represented by

iX(d/dr-rxiXè),

and D ± i A is represented by

iX(d/dr + rx(-iXb±XA)).

Proof. See [L], which uses calculations of [Ch2].

Lemma 1.9. The operators 33 and D ± i A are regular singular operators in the

sense of [BSl].

Proof. This is an immediate consequence of the preceding lemma once one

notes that the Kato-Rellich theorem (see [ReSi]) implies that iXD + XA is self-

adjoint.

Lemma 1.10. For some positive constant k the spectra of the self-adjoint opera-

tors iXD±XkA have empty intersections with (-1/2, 1/2). The set of such k

contains an interval that is unbounded on the right.

Proof. (iXD ±XÄ)*(iXD ± XÂ) = D2 + Ä2 ± i[A, D]. The last term is a bounded

operator that depends linearly on A . (See, e.g., [A, Proposition 1.15].)

Assumption 1.11. Henceforth we always assume that 21 has been chosen so that

the spectra of iXD ± XA have empty intersections with (-1/2, 1/2).

Assumption 1.11 '. At one point in section 2, we assume that 21 has been chosen

so that the spectra of iXD ± XcA have empty intersections with (-1/2, 1/2)

for all c > 1.
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Lemma 1.12 [BS1]. For 21 satisfying Assumption 1.11, the operator D + iA,
defined originally on the set of smooth compactly supported sections of S <8> E,
has a unique closed extension as an operator on L2 (S®E). This closed extension

is Fredholm. The same assertions are true of D - i A .

Notation 1.13. Henceforth we use the notation D ± i A to refer to the closed

extensions mentioned in the preceding lemma.

Lemma 1.14 [BS1], [BS2]. For 21 satisfying Assumption 1.11, (D + iA)*(D + iA)
and (D - iA)*(D - i A) have discrete spectra, of finite multiplicity, accumulating

only at infinity.

The following corollary is an immediate consequence of this lemma.

Corollary 1.15. The operators D + iA and D - iA are Fredholm.

2. The index formula

In this section we state and give two proofs of an index theorem for operators

of the form D + iA . One proof starts by observing that the general form of the

index theorem of [BS1] and relative index theory imply that the index depends

only on the behavior of D+iA on the cone. It thus suffices to calculate explicitly

the index of an operator we construct on the product of N with an interval.

(The metric on this product causes both ends of the product to be isometric to
the cone appearing in M.) This proof follows closely the analysis of perturbed

Dirac operators on certain complete manifolds that appears in [A]. This proof

requires more restrictive conditions on the perturbation A than are needed in
the rest of the paper. These conditons can be removed in the context of a

.rv-theoretic discussion that will appear in another paper.

The second proof, which works for any perturbation satisfying Assumption
1.11', proceeds by analyzing the terms that appear in the index theorem of

[BS1]. The key step is to analyze the reduced eta invariant by the adiabatic

limit technique of [BiC].

Lemma 2.1. Let Mx and M2 be manifolds with the properties described for M

in section 1. Let Bx and B2 be operators on Mx and M2 respectively with the

properties described for D + i A in section 1. Suppose the cone in Mx is isometric

to the cone in M2 by an isometry that extends to an isomorphism ofHermitian

vector bundles over the cones and that intertwines the restrictions of Bx and B2

to the cones. Then the index of Bx equals the index of B2.

Proof. The index of each of these operators is given by the integral of the

standard index form over the manifold plus a contribution arising strictly from
the cone [BS1]. The integral of the index form is zero on the odd-dimensional

manifold.

Notation 2.2. Let E+ , respectively £_ , denote the subbundle of E associated

with the positive, respectively negative, eigenspace of 21. Let D~ , respectively
_ ^+

D~ , denote the restriction of D to sections of each of these subbundles. Let
E-

S — S+®S~ denote the spinor bundle, and its decomposition into positive and

negative spinor bundles, over N. For a Dirac operator on A^ acting on sections

of the tensor product of S with another bundle, a superscript + denotes the
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part of this operator defined on the tensor product of S+ with the other bundle,

and the superscript - denotes the adjoint of this operator.

Lemma 2.3.  Index(Dt) = -index(D~ ).
E+ E-

Proof. The sum of the indices of these Dirac operators equals the index of D+ ,

which is zero by the cobordism invariance of the index.

Remark 2.4. Let M" be the disjoint union of two copies of M. Let 77" be

the operator on M" that equals D + iA on the first copy and -D - iA on

the second copy. Because changing the sign of an operator does not change its

index, the index of 77" equals twice the index of 77 + i A .

Definition 2.5. Let M' be the product (-2p, 2p) x N, and let E' be the vector

bundle (-2p, 2p) x E, with Hermitian structure, decomposition into positive

and negative subbundles, and connection respecting this decomposition all taken

from the corresponding structures on E. Orient M' by using the standard

orientation of the interval followed by the orientation N inherits from M. Put
a Riemannian metric dx®dx + f2(x)gN on M'. Here x is the variable from
the interval; gx is the Riemannian metric assigned to N earlier; and f(x) is a

smooth positive function with values (x + 2p) for x e (-2p, -p) and (2p-x)

for x £ (p, 2p). Let S' be the spinor bundle over M', and let D' be the Dirac

operator on sections of S' <8>E'. Let A' be the vector bundle endomorphism of

S' ® E' that agrees with A over each x £ (-2p, 2p). Let h(x) be a smooth

real-valued function that is identically equal to -1 for x £ (-2p, -p) and

identically equal to 1 for x G (p, 2p). Let

77' = 77' + (h(x)/f(x))iA'.

Remark 2.6.  (77')* = D'- (h(x)/f(x))iA'.

Remark 2.7. The reasoning appearing in the statement and proof of Lemma 1.8

allows us to identify L2(S'®E') with L2((-2p,2p), L2(S®Ë)). Then 77' is
represented by

-iX(d/dx + (f(x))~x(iXD - Xh(x)Ä)).

(77')* is represented by

-iX(d/dx + (f(x))-x(iXD + Xh(x)A)).

Lemma 2.8. Index(B') = index(B").

Proof. Apply Lemma 2.1 in the context of the following observations. There

is a natural orientation-preserving identification of the cone in the first copy of

M in M" with the right cone in M'. There is a natural orientation-reversing

identification of the cone in the second copy of M in M" with the left cone in

M'. The orientation-reversing identification intertwines the Dirac operator on
one cone with the negative of the Dirac operator on the other cone. Also h(x)

is negative on the left end of M'.

Lemma 2.9. Assume that the endomorphism 2Í used to define A is a positive

multiple of a smooth self-adjoint unitary endomorphism and that 21 satisfies

Assumption 1.11. Then

Index(B') = index(Dt ) - index(D± ).
E— E+
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Proof. Using eigenfunctions of D to form a basis of L2(S ® E), we see that

identifying the kernel of 77' reduces to solving each of a collection of systems
of ordinary differential equations

-iXd/dx + (f(x))~x(3I + ih(x)al).

Here 7 is the 2x2 identity matrix, and X is the 2x2 diagonal matrix with 1
in the upper left corner and -1 in the lower right corner. The block structure

of the matrices is determined by the decomposition S = S+ © S~ . 3 is the

eigenvalue of D, and a is the value by which A multiplies the associated
eigenvector.

Similarly identifying the kernel of (77')* reduces to solving a collection of
systems of the following form:

-iXd/dx + (f(x))~x(3I - ih(x)al).

Because there is an isomorphism between the positive and negative spectral

subspaces of the D associated with changing the sign of an eigenvalue, the

difference in the dimensions of the kernels of B' and (77')* equals the difference

in the dimensions of those parts of these kernels arising from the kernel of D.

Focusing on the contributions of kernel(D), we can calculate which so-

lutions of the resulting first order regular singular differential equations are

L2. The kernel of 77' arises from elements of kernel(Dt ) and elements of

kernel(Dz ). The kernel of (77')* arises from elements of kernel(Dt ) and
£+ __ E+

elements of kernel(D~ ). It follows that dim(ker(B')) - dim(ker((B')*)) =
E—

index(D± ) - index(D± ).
E- E+

Theorem 2.10. Assume that the endomorphism 21 used to define A is a positive

multiple of a smooth self-adjoint unitary endomorphism and that 21 satisfies
Assumption 1.11. Then

Index(D + iA) = index(Dt ).
E—

Proof. This follows from Remark 2.4 and Lemmas 2.3, 2.8, and 2.9.

The Atiyah-Singer index theorem provides the following corollary.

Corollary 2.11. Assume that the endomorphism 2Í used to define A is a positive

multiple of a smooth self-adjoint unitary endomorphism and that 21 satisfies
Assumption 1.11. Then

Index(D + iA) =   Ích(Ë-) A Â(N).

N

The extra assumptions in the preceding lemma, theorem, and corollary can

be removed by a 7(-theoretic discussion. This will appear in another paper.
Alternatively we can prove these results without the extra assumption on the

perturbation in the following way. (The equality of the right-hand sides of the

formulas in Lemma 2.9, Theorem 2.10, and Corollary 2.11 is independent of

the extra assumptions on the perturbation. We express the next theorem using
one of the three equivalent formulations.)
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Theorem 2.12. For a perturbation satisfying only the assumptions of section one,

including Assumption 1.11',

Index(D + iA) = index(D± ).
E—

Proof. In our setting the index formula of [BS1] states that the index of D + iA

equals the sum of three terms: an integral of a standard index form, a term

involving the negative of the reduced eta invariant of the operator on N, and

a term involving residues of this eta invariant. The first term is zero because

M is odd-dimensional. The residues vanish by the scaling argument of [B2,

proof of Theorem 4.4]. By [BiC] the reduced eta invariant is invariant under

multiplying the perturbation by a factor bigger than one (we are in the range

where no integer jumps occur), and so its value equals the value of its adiabatic

limit. [BiC] shows that the negative of this limit has the value asserted for the

index of D + i A .

Remark 2.13. The perturbed Dirac operators considered in this paper are special

cases of what might be called in the language of [BS1 ] first order regular singular
perturbed elliptic operators. From our point of view it is important that the

perturbation grow (asymptotically) in inverse proportion to the distance from

the singular set. Such operators arise in the index theory of transversally elliptic
operators in the following way. (See [At], [Sin] for a discussion of transversally

elliptic operators.)
Let X be a closed Riemannian manifold on which the compact Lie group

G acts by isometries. Let T be a G-invariant first order differential operator

on X that is elliptic in directions transverse to the G-orbits. The index of T

is often regarded as a distribution on G. There is an equivalent way to view

the index of T (although there is no simple direct calculation that translates

between the two points of view). The second point of view, often useful in its

own right, is to list for every irreducible unitary G-representation n the value:

multiplicity of n in kernel(T) minus multiplicity of n in kernel(T*). We

refer to the value in the list associated to a representation n as the 7r-index of
T.

For a given n, the rc-index of T is equal to the index of a first order reg-

ular singular (perturbed) elliptic operator. The constructions that follow are

described fully in [BHe2]. For a given T and n , form the tensor product of

the domain and range bundles for T with the bundle "V%* —> X. This last

bundle is the product of X with a vector space carrying n 's contragredient

representation. Define the transversally elliptic operator T cs> 7 on the sections

of the tensor product bundles. The n-index of T equals the index of the re-

striction of T ® I to the set of G-invariant sections of these bundles. This
index can be calculated over the dense open subset Xo formed by the union of

principal G-orbits. This index equals the index of an elliptic operator on the
(often incomplete) manifold X0/G. When the dimension of a G-orbit drops,

the condition defining transversal ellipticity becomes stricter. Continuity im-

plies that the stricter condition holds in a neighborhood of a smaller orbit. The
"extra ellipticity" as one approaches the edge of Xo translates into a pertur-

bation of the elliptic operator arising from the transverse directions of T on
Xo/G. The calculations that arise from this point of view are more complicated

than may be apparent from this remark. In particular the operators that arise
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can be more complicated, with fewer nice properties, than the perturbed Dirac

operators considered in this paper. We plan to address the questions that arise
from this point of view in more detail in other papers.
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