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Abstract. D. Westood (J. Funct. Anal. 66 (1986), 96-104) proved that Coo-
contractions with dominating spectrum are in A«0 . We generalize this result

to polynomially bounded operators.

1. Introduction

Let ß? be a complex, separable, infinite dimensional Hilbert space, and let
38 (%f) be the algebra of all bounded, linear operators on £?. Recall that an

operator T £ 38(ß?) is called polynomially bounded (notation T £ (PB)(ß?) )

if there exists a constant K > 1 such that for every polynomial p ,

(1) \\p(T)\\<K$w{\p(z)\:\z\ = l}.

Of course, all contraction operators in 38(ßf) are polynomially bounded,

and in the past fifteen years the theory of dual algebras generated by a single
contraction operator has been used very succesfully to obtain information about
the structure of such operators (see for example [1], [2], [5], [6]). More recently

(cf. [11], [12], [13], [15], etc.), researchers have begun to use the theory of

dual algebras generated by an arbitrary polynomially bounded operator to ex-
tract structural information about such operators. As was pointed out in [11],

however, many parts of the theory for contraction operators do not readily gen-
eralize to the case of polynomially bounded operators. The purpose of this note

is to make a modest contribution to this theory, by proving a generalization

(Theorem 2 below) of the main result in [16] and one of the results in [11].
Before stating Theorem 2, we recall some notation and definitions from this

theory.
If T is in 3§(%?) and Jf is a (closed) subspace of %?, then 7> denotes

the compression of T to J!, i.e., 7> = PjtT\jr, where P# denotes the

orthogonal projection from %? onto J?. Also the spectrum of T, the point

spectrum of T and the essential spectrum of T will be denoted by o(T),
op(T) and oe(T), respectively. Moreover, Coo(%?) is the set of all operators

T in ^(¿T) such that the sequences {Tn}n™ , {T*"}^ converge to 0 in the

strong operator topology on 38(%?).
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It is well known (cf. [9]) that 38(%?) is the dual space of the Banach space

Wxffi) of trace-class operators on £? equipped with the trace-norm || ||i,

and the duality is implemented by the bilinear form (T , L) =trace(TL), T £

3è'(Jf), Le %(ßr). If T is an operator in 3B(ßf), sfT will denote the dual
algebra generated by T (i.e., the smallest weak*-closed algebra containing T

and the identity operator on %? ), ¿fr (= ^i/-L^r ) the natural predual of stfj.

For any L £ ^x (%?) the corresponding element in &j will be denoted by [L]t .
In particular, for any vectors x and y in %?, [x <8>y]r is the image in (gj of

x ®y, where x®y denotes the usual rank one operator in 38(%?).

As usual D denotes the open unit disc in C, and T= d D. If E is a measurable

subset of T (with respect to normalized Lebesgue measure m on T), a set A c D
is said to be dominating for E if almost every point of E is a nontangential limit

of a sequence of points from A, and the set of all nontangential limits of A

on T will be denoted by NTL( A ). The spaces L ' (:=L '(T)),H' (:=H1 ( T ))
and H °° (:=H °°( T )) are the usual Lebesgue and Hardy function spaces on T,

relative to the measure m. It is easy to see that if T e (PB)(ß^), there exists

a smallest number M such that ( 1 ) is valid for every polynomial p, and we

denote the set of all T £ (PB)(ßf) for which M is the smallest such number by

(PB)M(JT) (cf. [11]). If T £ (PB)M(%f), it is easy to see that for any pair of
vectors x and y £ 3? there exists a measure px¡y on T such that for every

polynomial p,

(2) (p(T)x,y)=    pdpx,y ,

T

and the operator T is called absolutely continuous (notation T e (ACPB)M(^) )

if for every pair x, y in %? there exists an absolutely continuous measure px¡y

satisfying (2) (with respect to m).
For absolutely continuous polynomially bounded operators it is well known

(cf. [11]) that there exists a unique unital, norm continuous algebra homomor-

phism
®T : H°° -» sfT

onto a weak * dense subalgebra of s&t such that Or extends the Riesz-Dunford
functional calculus, d>r is continuous if both H °° and sfj are given their

weak'-topologies, and d>T is the adjoint of a bounded, linear, one to one map

<pT:ST^Lx/YLXo.

Let us also recall (cf. [11]) that the class AM(¿F) is the set of all T £
(ACPB)M(%f) for which <S>T is bounded below. In this case <¡>T is also a
weak * homeomorphism between H°° onto s/j, when H°° and sáT are given

their weak'-topologies, and </)t is onto.

For any / in L ', [/]LyH' denotes the image of / in L'/H0 under the

canonical projection from L ' onto L'/H0. If X £ D and P¿ is the associated

Poisson kernel on T (i.e., P;(£) := ^~JAI \  ), we write
v w        \l-Àe"\

[Q]T = <t>Tl([?x]m>)>

and it is easy to check that for any function h in H °° ,

(*r(A),[Q]r) = A(A).
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If T £ kM(%?), then, as is customary, <§o(.#r) denotes the set of all [L]t in

Sj for which there exist sequences {x„}n°?x, {yn}n^i m tne unit ball of %f

such that

(i)  lim^oo \\[L]T - [xn <8> v«]r|| = 0, and
(ii)   lim„^00(||[x„®zt;]r|| + ||[wO>'«]7'||) = 0 for any uzeX,

and kM(^) has property %o,e (6 £ ( 0 , 1 ]) if %(sfT) (which is (cf. [4])
absolutely convex and norm closed) contains the closed ball in &T centered at

0 with radius 6.
The following result comes from [11], and will be needed in the sequel.

Lemma 1. Let T £ kM(ßT) n C00(X).

(i) If {x„}n™x is a sequence of vectors converging weakly to 0, then for any
vector z £%?,

lim (||[x„ ® z]t\\ + \\[z®x„]T\\) = 0.
n—»oo

(ii) IfX£ oe(T) n D, then [CX]T £ %>(s/T).

Finally, we write, as is customary, A^(^) for the set of those operators

T in kM(%?) such that for any doubly indexed sequence {[L¡j]t}í>x. j>x of

elements of @t ■> there exist sequences {xj}¡™ and {yj}j™ of vecfors in %f

such that
[Lij]T = [x¡ ® yj]T ,        1 <i,  I<j.

Now we may state the main result of this note.

Theorem 2. Let T £ (PB)M(^) n C00(^) besuchthat o(T)nD dominates J.

Then reA^(J).

2. The details

In this section we prove Theorem 2.

Since for any function h £ H °° , h(a(T)f)D) C o(®T(h)), it follows that <Pr

is bounded below, so T £ kM(%?). Thus by Theorem 3.7 of [2] it is sufficient
to show that sfp has property áó,« for some 6 £ (0 , 1]. The following lemma

is the main ingredient in showing this.

Lemma 3. Suppose e, S are positive numbers, f is a nonnegative function in

L ', and {yj}f=x is a finite sequence of vectors in %?. Then there exists x £%?

such that

W \\4>TXl\f\LW)-\xQ>x\r\<z,

and

(ii)       ||x||<2||/||}/2,     \\[x®yj]T\\ + \\[yj®x]T\\<ô,     j = l,...,p.

Proof. Define T, = (op(T) \ ^(TYjnD, T2 = (o(T) \ (op(T) U oe(T)))nV,

f i = NTL(TX), f2 = NTL(F2), and f3 = NTL(oe(T)n D). First we consider
//- . By Lemma 1.2 of [3], there exist a finite sequence of positive numbers

11

{a^}j1\ and a finite sequence {aj}j^\ of distinct points in Ti, such that

j=\
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and

(3) ||//?i-¿4%'Hi<e/5-
7=1 '

For each j choose a vector of norm one x]l) £ ker(A^ - T), and define

%?x = spanix]1'}^"1!. Then %{ £ Lat(T), and by the choice of the sequence

{"j }jl\ > me set {•*; }/"i is linearly independent. So dim^i = zzt , and

T%¡ has the eigenvectors [x\ '},"', corresponding to the distinct eigenvalues

{X{¡]}jl\. Therefore by Theorem 2.2 of [16] there exists jcW in X[ with

ll*(1)ll<ll/*F,ll!/2

such that

[x^®x^]T = JTa{;)[CxW]T.
j=i '

Hence by (3),

UTl([fXf2]L^0)-[x{l) <8>X^]t\\<€/5.

Since %[ is finite dimensional and invariant for T,

T^e^£(ACPB)M(^e^¡),

ff(í>eü)nD dominates T, T, \ {Xf}^ c (o>(7>e^) \ ae(Tjrex¡)) > and

NTL(Tx \{X{p}j=\) = f j. By the same argument as above (applied to 7>e^ ),

one can find a finite sequence of positive numbers {a^2)}7"2!, a finite sequence

{42)};=i of distinct points in Tj \{Ajl)}J"11, and a vector x™ in %*e%[ such
that

(4) ||/x~ - ¿>f/>!!,< e/5,
7=1 '

(5) [*(2) <8> x^\T^ = ¿ af[Ck?]T3rB)ex ,
7=1 '

and

ii^(2)ii<ii/^,ii!/2-

Since %\ is invariant for T, by (5) it follows that

[x^^x^]r = f:af[C^]T,
7=1 '

and taking into account (4), we obtain

II^Œ/Xr.W -[xi2) ® *(2,H< c/5.

One can thus find by induction an orthogonal sequence {x^}^ such that for
any positive integer zz,

ii*(B)ii<ii/x?iii!/2
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and

\\<t>T ([/Jr,]LyH¿) - [xln) ®x(B)HI < e/5.

If M is large enough, y'1' := x'M) satifies the inequalities

(6) m^VXfMai) - Lv(1) ® y(1)H < e/5 ,

(7) ||y(1)|| < H/Xf, ||}/2, ||[y(1) ® VjhW + IILV; ® y(1)H <S/A,    j=l,...,p.

By a similar argument as above (applied to fxf ,f ) one can obtain a vector

yW such that

(8) UTl([fx^]mO - iy(2) ® y(2)]rll <e/5.

(9) iiy(2)ii<n/z?A?iii;/2,

(10) ||[v(1) ®y(2)HI + ||Lv(2) ®V(1)]r|| < e/5,

and

(11) IILv(2)®J';]r|| + ||LV;®J'(2)]r||<á/4,     j=l,...,p.

Putting together (6)-(l 1), we get

(12) lly<1)+y2)||<21/2||/z?|U?2|i;/2,

(13) ||[(y(1) + y(2))®yjhW + \\\yj®(y(l) + y(2))]rl| <S/2,    i = l,...,j»,

and

(14) II^L/X?iU?2]LyH.) - [(v(1) +y{2]) ® Cv(1) +y(2))]r|| < 4e/5.

Now we concentrate on fxT\,f uf • Since af(r)nD dominates T\ (fi uf2),

again by Lemma 1.2 of [3] one can find a finite sequence of positive numbers

iak}kti > and a finite sequence {X¡c}kti C Oe(^) sucn that

L

E^<ll/^TV?iU?2)l|. ,
fc=i

and

II^^tvF.u^W - X>l<^]r|| < e/20.
fc=i

For each A: G {1, ... , L} let {jcji ̂ }n~, be a sequence of vectors in the unit ball
of %?, converging weakly to 0 such that

iim||[CxJr-[xf ®A|| = 0.
n—»oo

By a standard argument (since lim (\\[x„k^ ® u]T\\ + \\[u ® -x^rll) = 0 for any
n—»oo

u in ßf, k = 1,... , L) one can choose inductively positive integers {nk}ktx
such that

*=i
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satisfies

(15) II^[/XtvFiU?2)]l?h.) - Lv(3) ®y(3)]r|| < e/10 ,

(16) i^(3)h21/2ii/xtv?iU?2)ii!/2,

(17) ||[(y(1) +y(2)) ®y(3)H + ||[y(3) ® (y(1) +y(2))]HI < e/20,

and

(18) ||LV(3)®y7]rll + l|[y7®y(3)]r||<<5/2,     j=l,...,L.

By (12)—(18) it follows easily that the vector x := yw +y{2) +y(3) satisfies (i)
and (ii) above, and the lemma is proved.

The next step in the proof of Theorem 2 is to show that if / is a nonnegative

function in L ' such that ||/||i < 1/2, then ^([/JxyH') € ^(sfT) ■ Once this

has been shown, it will follow that if / e L1 is such that ||/||i < 1/8, then

^t1 (lf\hfHl) e %oWt) ■ Thus taking into account the facts that tf>T is invertible

and ||[/]LyHi|| < A/ll^'ít/lLyjji)!! for any / e L1, it will follow that s#t has

property S?om%m-, so we are done. To see that for any / e L1 such that

11/111 < 1/8, <f>T¡'([/Ilj/h1) e %o(-&t) » pick two sequences of positive numbers

{e«}n=i a110" {^«}„~i decreasing to 0, and a dense, countable subset {zn}n°?x

in J*\ By Lemma 2, one can find a sequence {jc(n)}„!!°i of vectors in the unit
ball of %? such that for every n ,

\\<t>Tl([nLW0)-[x{n)®xW]T\\<en,

and

||[*(B) ® Zfclrll + \\[zk ® Jf(B)]r|| < ¿« ,     fc = 1, ... , n ,

so the sequence   {x^}^   converges weakly to 0.     Hence by Lemma  1,

'Pt ' ([/Il^h1 ) e ^o(-^r), and the proof of the theorem is complete.

Remarks. This paper constitutes part of the author's Ph.D. thesis written at

Texas A&M University under the direction of Carl Pearcy. The referee has

kindly pointed out that Jörg Eschmeier obtained a similar result in [10].
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