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(Communicated by Andrew Bruckner)

Abstract. Recently Stolarsky proved that the inquality

(*) / g(x1^a+b))dx> [ g(xxl")dx ( g(xxlb)dx
Jo Jo Jo

holds for every a, b >0 and every nonincreasing function on [0, 1] satisfying

0 < g{u) < 1 . In this paper we prove a weighted version of this inequality.

Our proof is based on a generalized Chebyshev inequality. In particular, our

result shows that the inequality (*) holds for every function g of bounded

variation.  We also generalize another inequality by Stolarsky concerning the

T-function.

The following remarkable inequality, recently proved by Stolarsky, has inter-

esting applications (see [6]).

Proposition A. If 0 < g(x) < 1 and g is nonincreasing on [0, 1], then, for all
positive numbers a and b, it holds that

(1) / g(xlHa+V)dx> f g(xx'a)dx [ g(xx'b)dx.
Jo Jo Jo

Stolarsky also observed that by introducing the quotient Q(g, p) as

Q(g,p)= [ g(x)xf-xdx/ [ x"-xdx,
Jo Jo

we can make a change of variables and formulate ( 1 ) as

Q(g,a + b)>Q(g,a)Q(g,b).

In this paper we will generalize this result by considering the quotient

Q(g,w)=      g(x)w(x)dx/ I  w(x)dx,
Jo Jo

where w is a nonnegative and integrable weight function on [0,1], and by

permitting that g is an arbitrary function of bounded variation on [0, 1] (see

Theorem 1).   Our proof is different from that in [6] and based upon some

variants of Chebyshev's inequality.
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We consider nonnegative and integrable weight functions w{, w2, and w$

on [0, 1] and introduce the notation

Wi(x)= [ Wj(t)dt/ [ Wj(t)dt,
Jo Jo

i =1,2,3.

Our main result reads:

Theorem 1. If g is a function of bounded variation on [0,1] such that 0 <

g(l) < g(x) < g(0) for all x £ (0, 1) and if

(2) Wx(x)W2(x) = W3(x)   for all x£ [0,1],

then

(3) g(0)Q(g, wi) > Q(g, wx)Q(g, w2).

Proof. Inequality (3) reduces to an equality for every g = C, and thus we may,

without loss of generality, assume that g (I) < g(0). First we make a partial
integration and find that

• i

Q(g,Wj)=      g(x)Wi(x)dx/ /  Wj(x)dx
Jo Jo

= |  g(x) j Wi(t)dt\   - J  (J Wi(t)dt\dg(x)dx\/ j Wi(x)dx..

i.e.,

(4) Q(g, w¡) = g(l) - [  Wl(x)dg(x),        z=l,2,3.
Jo

Next we note that

• i

/  Wi(x)dg(x)-g(l) + g(0)= ¡ (Wi(x)-l)dg(x)
Jo Jo

= [(Wi(x)-l)g(x)]x)- j g(x)dWi(x)
Jo

= *(0) - / g(x)dWi(x) = i [g(0) - g(x)]dWl(x) > 0
Jo Joto Jo

and

• i

/  Wi(x)dg(x) = [Wl(x)g(x)]o- i g(x)dWl(x) = g(l)- [ g(x)dWi(x)
Jo Jo Jo

= ¡ [g(l)-g(x)]dWl(x)<0.
Jo

-1

10

By combining these estimates we get

«      0iwrw)I«w'lx)äslx)il-   , = ''2'3-
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Now we recall that the discrete Chebyshev inequality says that
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(6) (Pi +P2)(Piaxbx +p2a2b2) > (pxax + p2a2)(pxbx + p2b2),

whenever ax > a2 , bx > b2, and px, p2 > 0 (see [3, p. 43]). In fact, inequality

(6) follows from the following equalities:

(ai - a2)(bx - b2)pxp2 = axbxp] + (axbx + a2b2)pxp2 + a2b2p\

- axbxp2 - (aib2 + a2bx)pxp2 - a2b2p\

= (Pi + P2)(a\bxPx +a2b2p2)

- (axpx + a2p2)(bxpx + b2p2).

In view of (5) we can apply (6) with px = g(l), p2 = g(0)-g(l), ax - bx = 1,

a2
^(1)

h®Iomx)dgix)> and h=wrmíoWÁX)dg{x)

to find that

g(0) ^^-TOm/o'^W^I^^
(7)

> *0)- /'Jo
Wx(x)dg(x) g(V- fJo

W2(x)dg(x)

= Q(g, wx)Q(g, w2).

We also need the following inequality of Chebyshev type of independent inter-

est:

(8)       /  Wx(x)dg(x) f  W2(x)dg(x)< [ dg(x) f  Wx(x)W2(x)dg(x).
Jo Jo Jo Jo

Inequality (8) is the classical Chebyshev inequality for integrals with the positive

measure d(-g) provided that g is a nonincreasing function (see [4, p. 40]).

In our case g has only finite variation and we must use a generalized form of

the Chebyshev inequality. In fact, now (8) is a special case of a result by Fink

and Jodeit (see [1, Theorem 2] and [2, Theorem 2]). Here we present another

independent proof of (8) for functions of bounded variation.

For x£ [0, 1] we let

v(x)= fw2(t)dg(t) fdg(t)- f w2(t)dg(t) rdg(t).
Jo Jo Jo Jo
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Then K(1) = 0 and

V(x) = [g(l)-g(0)] ¡XW2(t)dg(t)-[g(x)-g(0)] i  W2(t)dg(t)
Jo Jo

= [g(l)-g(x)] ¡XW2(t)dg(t)-[g(x)-g(0)] f W2(t)dg(t)
Jo Jx

=[g(i) - g(x)] \[w2(t)gm - j* g(t) dw2(t)}

- [g(x) - g(0)]l[W2(t)g(t)]xx - jf ' g(t)dW2(t)\

= [g(l) - g(x)]   W2(x)g(x) - j* g(t) dW2(t)~\

g(l)-W2(x)g(x)- i g(t)dW2(t)
J x

W2(x)g(0)-JXg(t)dW2(t)]

\g(l)-g(l)W2(x)- ¡\(t)dW2(t)

~[g(x)-g(0)]

= [g(V-g(x)]

~[g(x)-g(0)]

= [g(l)-g(x)][X[g(0)-g(t)]dW2(t)
Jo

- [g(x) - g(0)] f [g(l) - g(t)]dW2(t)
Jx

<0.

Therefore,
• i

/ dg(x) [  Wx(x)W2(x)dg(x)- f  Wx(x)dg(x) f  W2(x)dg(x)
Jo Jo Jo Jo

= /  Wx(x)dV(x)
Jo

= [Wx(x)V(x)]o- f  V(x)dWx(x) = V(l)- [  V(x)dWx(x)>0,
Jo Jo

and the inequality (8) is proved.

Finally, by combining (7) with (8) and using (2) with (4) we find that

Q(g, wx)Q(g,w2)

1
<g(0)

<g(0)

= g(0)

^^-^y^í^^^í'^^
g(l)-g(0)Jo

g(\)- i  Wx(x)W2(x)dg(x
Jo

g(l)- f  W,(x)dg(x)
Jo

= g(0)Q(g,w,),

and the proof is complete.
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Remark 1. Inequality (3) is sharp, and it reduces to an equality if g(x) =

Cxio,a](x) for any a£[0, 1].

Remark 2. Our proof above shows that if we restrict ourselves to nonincreasing

functions g, then (3) holds even if assumption (2) is replaced by the condition

Wx(x)W2(x)<W3(x).

Remark 3. In the proof of (8) we found the following identity:

/ dg(x) (  Wx(x)W2(x)dg(x)- Í  Wx(x)dg(x) f  W2(x)dg(x
Jo Jo Jo Jo

= I  ([g(x)-g(l)]f[g(0)-g(t)]dW2(ti) dWx(x)

+ f ([g(0)-g(x)]j\g(t)-g(l)]dW2(t)\ dWx(x).

This identity was discussed also in [7], but our proof is different (cf. also [5]).

Also, Fink and Jodeit obtained their result by first proving a suitable identity.

Remark A. Obviously Theorem 1 can be generalized in various ways. Here we

mention the following possibility: Let g be as in Theorem 1, let the weights

wx, w2, ... , wn be positive and integrable functions on [0, 1], and let

W¡\(x)= fwi(t)dt,     1 = 1,2,...,»,        and       W„+X(x) = TT Wt(x).
Jo ,

Then, by using Theorem 1 and induction, we obtain the following generalization

of (3):
n

(g(0))"-lQ(g,Wn+i)>Y[Q(g,wl).
1

Remark 5. Let g be a nonincreasing and nonnegative function on [0, 1 ]. Then

a simple calculation shows that Q(g, p) is a log-convex function. Now, by

using well-known inequalities for log-convex or convex functions, we obtain

various inequalities for the Stolarsky quotient Q(g, a), e.g., the following: If

0 < a < b < c, then

(Q(g, b))c~a < (Q(g, a)y-b(Q(g,c))b-a.

Remark 6. Stolarsky presented some interesting applications of his inequality

(1). In particular he pointed out a new inequality for the T-function. We

remark that similarly to the proof of Theorem 1 we can prove this inequality

directly by using the Chebyshev inequality. We finish this paper by proving the

following more general result, which Stolarsky [6] proved only for zz = 2.

Theorem 2. Let a,¡, i = 1, 2, ... , n , and x be positive numbers. Then

rr .   r(x + Eifl«)r(*)"-'
w"    nïnx+a.)

is a nonincreasing function of x.
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Proof. Our proof is based upon the Chebyshev inequality applied (n-l) times

to the increasing functions fi(t) = ta¡, i = 1, 2, ... , n and with the weight

w(t) = ix_1(l - t)y'x. In this way we find that

n-l

I tx-x(i-ty-xdt\     Í f[ta'tx-x(i-ty-xdt

n      -i

>T[ /  ta'tx-x(l-ty-xdt,
r Jo

i.e., B(x, y)n~xB (x + £" a¡, y) > H" B(x + a¡, y). Therefore, by using the

fact that B(x, y) = r(x)T(y)/r(x + y), x,y>0,

r(xy-xr(x + E"ai)     > A  r(*+ <*,-)
T(x + y)"~'T(x + y + £ï a¡) ~ \l T(x + y + a,) '

and this inequality can be rewritten as

r(x)"-'r(s+ £>,-)    r(zr-T(z + E>/)

ninx+ai)    -    nïnz+fl,-)    •

where x < z = x + y , and the proof is complete.
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