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INTERMEDIATE VALUE THEOREMS
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FOR SEMI-CONTINUOUS FUNCTIONS IN PRODUCT SPACES
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Abstract. We prove an intermediate value theorem for noncontinuous func-

tions; as consequences, we obtain coincidence and fixed points theorems for

nonmonotone and noncontinuous functions defined and with values in a prod-

uct space R7 . Some of them, even when the index set / is a singleton, improve

recent statements of S. Schmitd.

Let us consider the two following classical properties: a continuous or a non-

decreasing function from [0,1] into itself has a fixed point. Are these results

related together? Another formulation of this question may be: is there a re-

lation between the continuity and the monotonicity of a function? Of course

the answer is yes, since we are working on [0,1]. More precisely, a nonde-

creasing function on [0,1] is upper semi-continuous on the left and lower

semi-continuous on the right. It is the semi-continuity properties which allow

us to give intermediate value theorems, coincidence theorems and fixed point

theorems.
We consider in this short paper not only real functions of a real variable

but, more generally, functions defined and with values in a product space, R7 ;

mostly, the assumptions on each coordinate function are right and/or left semi-

continuities and a monotonicity condition which quasi-monotone functions pos-
sess; so we obtain in particular a generalization of a fixed point theorem of S.

Schmitd [2] which has motivated our study.

Let / be an arbitrary index set. An element x := (x,),-6/ of R7 will be also

denoted by x := (x¡, x') where x' belongs to the product space R7^'*. Of

course, the space R7 is equipped with the product order and so, for x and y

in R7, we write x < y if and only if x¡ < y¡ for every i in / ; [x, y] is the

set of points z in R7 with x < z < y . In the sequel, two points u and v are
fixed, with u < v .

Theorem 1 (Intermediate value theorem). Let h := (/z,);€/ be a function from

[u,v] in R7. Suppose that, for each i in I and each x in [u,v], the following

properties are fulfilled:

(1.1) the function h¡(-, x') is lower semi-continuous on the right on [u¡, v¡] ;
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(1.2) the function h¡(-, x') is upper semi-continuous on the left on [u¡, v¡] ;

(1.3) the function h¡(x', •) is nondecreasing on [u1, v'] := Hjei\{f}iuJ > vñ-

Then, the interval [h(v), h(u)] is contained in the set h([u, v]).

Proof. We suppose h(v) < h(u), else there is nothing to prove. Let X be an

element of R7 such that h(v) < X < h(u) ; we have to prove that the function

h takes the value X at a point of [u, v]. Let us set:

Hx:={x£[u,v]\X<(x)}

and for each i

Hx,i := {xj £ [Uj, iz/px' e [w', vl] X < h(x¡, x')}.

From the choice of X, we remark that u belongs to H¿ and hence it makes

sense to define the point x to be the least upper bound of H¿ (x = sup//a) ;
we are going to show that X — h(x). We remark also that u¡ belongs to Hi ,

and it is easy to verify, directly from the definitions, that x, = sup H¿ ¡.

In order to prove X < h(x), let us choose arbitrarily an index i in / and

a real number p, p > h¡(x). From (1.2), we find a neighborhood U¡ of x¡

in [Ui,v¡] such that hi(x¡,x') < p for every x¡ in U¡, x¡ < x¡. Since

xi = s\ipHx,i, we can find a point y¡ in H^jVi U¡, with y¡ < x¡ (and hence

hi(y¡, x') < p) and since y¡ belongs to H^j there exists a point y' in [ul, v']

such that X < h(y¡,y'), and in particular such that X¡ < hi(y¡,yl). Then,

the point y := (y¡, y') belongs to H¿ and therefore y < x and in particular

y i < Xi. Consequently, using the property (1.3), we obtain X¡ < p and then

X¡ < h¡(x) from the arbitrary choice of p and finally X < h(x) from the
arbitrary choice of i.

We now want to show h(x) < X, that is, h¡(x) < X¡ for every i in I, and so

we fix arbitrarily an index i. If x¡ = v¡, then the result is clear by the property
(1.3) and the choice of X (h¡(x) = hi(x¡,x') = h¡(Vi,xl) < hi(v¡v') < X¡).

Therefore we consider the case x¡ < v¡ ; let us suppose X¡ < h¡(x). From (1.1),

we find a neighborhood V¡ of x¡ (in [u¡, v¡]) such that X¡ < hj(x¡, x') for
every x¡ in V¡, x¡ > x¡ ; let us take a point y¡ in V,, x¡ < y, < v¡, and let

us consider the point w := (y,, xl). Then we have h¡(w) > X¡. Moreover we

have also w > x , which implies wj > xJ for every j in /, and in particular

for j / i. For such j, we have w¡ = x¡ and we obtain, by (1.3), hj(w) =

hj(Wj, VJJ) > hj(Wj ,xJ) = hj(Xj, 3c;) and so, from the first part of the proof

hj(w) > Xj. Therefore we obtain h(w) > X and hence w belongs to Hk, which

is in contradiction with the inequality w¡ > x¡. Thus, we have h¡(x) < X¡ and
the proof is complete.   □

If we replace in Theorem 1 the function h by the function -h , we obtain
its dual form:

Corollary 2 (Intermediate value theorem). Let h := (A,-),-e/ be a function from

[u,v] into R7. Suppose that, for each i in I and each x in [u,v], the
following properties are fulfilled:

(2.1) the function «,-(•, x') is upper semi-continuous on the right on [w,, v¡] ;

(2.2) the function h¡(-, x') is lower semi-continuous on the left on [u¡, v¡] ;
(2.3) the function h¡(x¡,') is nonincreasing on [u',v'].

Then, the interval [h(u), h(v)] is contained in the set h([u, v]).
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Important consequences of the preceding statements are the following coin-
cidence or fixed point theorems.

Theorem 3 (Coincidence theorem). Let f :— (/)/6/ and g := (g,),e/ be two

functions from [u,v] into R7. Suppose that, for each i in I and each x in
[u, v], the following properties are fulfilled:

(3.1 ) the function /(•, x') is l.s.c. on the right and u.s.c. on the left on [u¡, v¡] ;

(3.2) the function &•(•, x') is u.s.c. on the right and l.s.c. on the left on [«,, v¡] ;

(3.3) the function fi(x¡-, •) is nondecreasing on [u',v'];

(3.4) the function gi(x¡,-) is nonincreasing on [u',v1].

Suppose moreover that we have:

(3.5) g(u) < f(u) and f(v) < g(v).

Then, there exists a point x in [u, v] such that f(x) = g(x).

Theorem 4 (Fixed point theorem). Let f := (/),6/ be a function from [u, v]

into R7. Suppose that, for each i in I and each x in [u,v], the following
properties are fulfilled:

(A. 1 ) the function /•(•, x') is l.s.c. on the right and u.s.c. on the left on [w,, v¡] ;

(4.2) the function f(x¡, •) is nondecreasing on [u',v1];

Suppose moreover that we have:

(4.3) u < f(u) and f(v)<v.

Then, there exists a point x in [zz, f ] such that f(x) = x.

Theorem 5 (Fixed point theorem). Let g :- (g¡)¡ei be a function from [u, v]

into R7. Suppose that, for each i in I and each x in [u,v], the following
properties are fulfilled:

(5.1) the function g,(-, x') is u.s.c. on the right and l.s.c. on the left on [u¡, v¡] ;
(5.2) the function gi(x¡,-) is nonincreasing on [u',v'].

Suppose moreover that we have:

(5.3) g(u) < u and v < g(v).

Then, there exists a point x in [u, v] such that g(x) = x.

Proof. In order to obtain Theorem 3, it is sufficient to apply Theorem 1 with

h := f - g (and at the intermediate value X — 0). To obtain Theorem 4 (resp.

5), it suffices to apply Theorem 3 with the identity in place of g (resp. /).

(For example, if g(x) = x , then gi(x¡, •) = x¿ ; this function is constant, and
hence it is nonincreasing.)   G

Remarks. (6.1) Tarski Theorem [3], applied to functions defined on a product

of intervals, states that a nondecreasing function / := (/),6/ from [u, v] into

itself has a fixed point. This result is contained in Theorem 4, since for every z

in / and every x - (x¡, x'), the function fi(x¡, •) is then nondecreasing, and

also the function /(•, x') is nondecreasing, and hence it is l.s.c. on the right

and u.s.c. on the left on [zz,, v¡], as we have already noticed.

(6.2) Suppose that w is a real function of a real variable. It is easy to verify
that, for every x , the following implication holds:

..           .    w(x +1) -w(x) ,.       .  -       . .  ,
hm    inf   —i-i-^- > -oo => hm   inf   w(x + t) > w(x).

r-0,r>0 t f—0,(>0 i —      \   t
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Of course, similar implications related to the lower limit on the left and upper

limits on the right or on the left also hold, but not the inverses. Consequently,

Theorems 4 and 5 improve strictly S. Schmitd's results [2].

We recall here that the monotonicity condition (hypothesis (1.3) for instance)

is weaker than quasimonotonicity (see also [2] for the definition), and hence that

our results apply to this class of functions.

(6.3) The proof shows that, in Theorem 4, the point x is the greatest fixed

point of / ; if we had defined, in Theorem 1, the point x to be the greatest

lower bound of the set Kx := {x £ [u, v]/h(x) < X} , then we would obtain, in
Theorem 4, that the point x is the smallest fixed point of /. Similar remarks

can also be made for Theorem 5.

(6.4) In [1], Hu recalled the notions of upper-right limit, lower-right limit,
and so on, of a function /, but he does not really use these notions; they lead

however directly to the notions of upper semi-continuity on the right, lower

semi-continuity on the right, and so on, of the function /, notions which are

the key of the present results!

To conclude, we underline that we have obtained here not only fixed point

theorems but also intermediate value theorems and coincidence theorems for

functions defined and with values in R7, where the index set / is not necessarily

denumerable. Moreover, and in the opposite direction, the preceding theorems

hold of course also when the set / is a singleton; in this case, the statements
are particularly simple; for example, Theorem 5 becomes:

Suppose that the real function k is u.s.c. on the right and l.s.c. on the left on a

real interval [a, b] ; if k(a) < a and b < k(b), then the function k has a fixed

point in [a, b].
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