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CHARACTERISTIC FUNCTIONS
AND PRODUCTS OF BOUNDED DERIVATIVES

ALEKSANDER MALISZEWSKI

(Communicated by Andrew M. Bruckner)

Abstract. This article is dedicated to the answer to the following question:

"Which characteristic functions can be expressed as the product of two or more

bounded derivatives?".

The real line (-00, 00) is denoted by R, the set of integers by Z and the

set of positive integers by N. The only measure used is Lebesgue measure in R
and each integral should be interpreted as the corresponding Lebesgue integral.

The distance between two nonempty subsets A, B of 1 will be denoted by

q(A, B) (i.e. q(A, B) = M{\x-y\: x £A,y £B}). For each set A cR, let
int A denote its (Euclidean) interior, cl^l its closure, frA its boundary, \A\

its outer measure and Xa its characteristic function.
All functions will be real functions of a real variable. If / is an interval

(throughout this paper we deal only with nondegenerate intervals), then 3(1)

denotes the family of all derivatives defined on / (in the case of an endpoint of
/ that belongs to / we consider the corresponding one-sided condition). Let

31 denote 3(R).
The terms " ¿/-closed", " ¿-interior" ( ri-int), etc., refer to the Denjoy topol-

ogy (density topology) on R. (See, e.g., [2], [5].) We say that a function is
approximately continuous if and only if it is continuous relative to the Denjoy

topology. It is well known that approximately continuous functions are Baire
one functions and bounded approximately continuous functions are derivatives

(cf., e.g., [1]). We will use an old lemma of Zahorski.

Lemma 1. Let A and B be disjoint, d-closed, G¡ sets. Then there is an approx-

imately continuous function g:E-»R such that 0 < g < I on R, g = I on

A and g — 0 on B [6, Lemma 12].

For each set T £ R and each interval /, let <pr(I) denote the measure of

the greatest interval J contained in I\T, if any such interval exists, and 0

otherwise (cf., e.g., [4]). If a and b are endpoints of /, then we will write also

tpT(a, b) instead of <Pt(I) ■
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We say that the set T c R is nonporous at x iff

lim 9T(x-t,x + t) =
«-0+ 2t

Also, T is called nonporous if it is nonporous at each of its points. We say that

the set T c R is ambiguous iff it is both an Fa and a Gá set.

For the remainder of this article, let T denote a fixed ambiguous and non-

porous subset of R, and S = R\7\ We will write q>(I) instead of tpr(I) ■
For each bounded interval / and e £ (0, 1], we will denote by &(I, e)

the family of all pairs of derivatives (fx, f2) defined on ell which satisfy the

following conditions:

(a) /i • h = 0 on T n I,
(b) fx=f2 and L/i| = l on SnI,
(c) if a is an endpoint of /, then fx(a) = f2(a) = Xs(a)>

(d) \A\<2, \f2\<2,
(e) ///i = /,/2,

(f) 1/,/,-l/H^e-l/l,
(g) |{* g /: /iW = f2(x) = l}\ > (1 -e) - |Sn/|.

We will denote by ,/" the family of all bounded intervals / such that &>(I, e) ^

0 for each e £ (0, I].
The following lemmas are proved in [4].

Lemma 2. Let H be ambiguous and let A be a nonempty Gg set in R. Then

there is an open interval I such that I n A / 0 and that either I n A c H or

In Ac R\H [4, Lemma 2].

Lemma 3. Let J be an interval such that /nT/0. Then J n T contains an
interval [4, Proposition 8].

Denote by Q the first uncountable ordinal. We will use the following well-

known theorem (Cantor-Baire stationary principle).

Theorem 4. Let {Fa}a<çi be a transfinite descending sequence of closed subsets

of R. Then there is a Ç < Q such that Fa = F¡ for a > Ç [3, Theorem 2, p.
146].

Define a transfinite ascending sequence {C7a}a<n of subsets of R as follows:

(1) Go = 0,
(2) Ga+X = int(5 U Ga), if a < Q is even,

(3) GQ+1 = int(T U Ga), if a < Q is odd,

(4) Ga = \Jß<a Gß , if a < Q is a limit ordinal.

Then for each a < fi, the set Ga is open. Note that Ga ^ R implies Ga ^ Ga+2

(cf. Lemma 2), so by Theorem 4, there exists a Ç < Q such that Gt = R.

Lemma 5. Whenever J is a bounded open interval and e > 0 there exist «eN

a«J xi, ... , x„_i e rn 7 such that xx < ■■■ < x„_i and, setting xq = inf/,
xn = sup /, we have

Xi - Xi-\ < y(Xi-X, x¡) + e

for i£{l, ... , n}.

Proof. Since T n J is a totally bounded separable space, we can find elements
X\,..., x„_i e TnJ such that for each t £ TC\J, there is an i £ {1, ... , n-1}
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such that \t - x¡\ < e/2. Set x0 and x„ as above. Then for i £{l,..., n},

Xi - x,_i > e =► [x,_i + e/2, x, - e/2] c S =>• <p(x¡-X, x,) > x, - x,_i - e.   D

Lemma 6. For every a, b £ T with a < b, there exists a strictly increasing

sequence (xz)zez of elements of Tn(a, b) such that

(1) lim^-ooXz = a, limz_00xr = b,

(2) for each z£l,

xz - Xz-l < (p(xz-x, xx) + [Q({a, b}, {xz_. , xz})]2.

Proof. Since a, b £ T, there exists a strictly increasing sequence (yz)zez of

elements of Tn(a, b) with limit points a and b (cf. Lemma 3). For each z £

Z, use Lemma 5 with J = Jz = (yz_x, yz) and e = [g({a, b}, {yz_i, yz})]2 ,

and finds points xz>\, ... , xz,„z-X £ Tn Jz such that xz,i < • • • < xZ)„r_i,

and setting xZi0 = yz-\, xz,n¡=yz,v/e have for i £ {1,..., nz} ,

xz,i - xz,;_i < (p(xzJ-X, xz>i) + [g({a, b}, {yz-X, yz})]2.

Arrange all elements of the set {xz,¿: z £ Z, i £ {1,..., nz}} in a strictly

increasing sequence (xz)z6z • It is easy to verify that this sequence possesses

desired properties.   D

Lemma 7. Whenever Del is measurable and bounded, and ex, e2 £ (-1, 1),

we can find approximately continuous functions fx, f2: R -► R such that

(1) f-f2 = 0 on R,
(2) fx=f2 = 0 on R\D,
(3) |/i|<2, \f2\<2,
(4) ¡Dfj = ej-\D\(J£{1,2}).

Proof. If \D\ = 0, then set fx = f2 = 0. Otherwise find disjoint measurable

sets Dx, D2 such that \DX \ = \D2\ and Dx öD2 = D. For j £ {1, 2} , first find
a closed set C¡ c d-intDj such that |C)| > |e;| • \D¡\ and then, using Lemma
1, find an approximately continuous function g}• : R -> R such that 0 < gj < 1
on R, ^;(x) = 1 for x £ Cj and gj(x) = 0 for x £ D¡ . Finally observe that

for; €{1,2},

M

and set

Sdj Si

fj = Si

--   \Cj\      <¿>

\D\

Sdj Si

It is easy to verify that the requirements of the lemma are fulfilled.   D

The following two lemmas are due to S. Konjagin. They have never been

published.

Lemma 8. Let rx, ... ,rn>0. Then there exist numbers tx, ... , tn £ {-1, 1}

such that for k, I £ {1, ...,«}, k <l, we have

s=k

< 2max{rJ: s £ {k, ... , I}}.
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Proof. We will use induction on n .

(1) If n = 1, then we set tx = 1.
(2) Assume that the assertion holds for some n £ N. Let rx, ... , rn+x be

nonnegative numbers and choose tx, ... , tn £ {-1, 1} according to the in-

duction assumption. Suppose that both the sequence (tx, ... , tn, 1) and the

sequence (tx, ..., tn, -I) do not satisfy our requirements. Then there exist

k, I £ {1, ... , n} such that

and

53tsrs + rn+x > 2max{rs: s £ {k, ... , n +I}} > 2rn+x

s=k

n

^2tsrs-rn+x < -2ma\{rs: s £ {I, ... , n + I}} < -2rn+x.

s=l

We may assume that k < I (the opposite case is similar). Subtracting the two

above inequalities we get

/-i

^^ + 2^+! > 2max{ri: s£{k, ... ,n+ l}} + 2r„+1,

s=k

contrary to the induction assumption. This completes the proof.   G

Lemma 9. Given a countable family of nonoverlapping intervals Jlf and a non-

negative function r: X —> R such that ¿~^,K€^r(K) < oo, we can find a function

t: S£ -» {-1, 1} such that for every interval I c R,

<2sup{r(K):KcI,K£jf}.E  *(*)"■(*)
xa ,xex

Proof. Let Kx, K2, ... be a sequence of all elements of J?. For each k £N,

apply Lemma 8 and find f*,i,..., i/t,* € {—1,1} such that for every interval

I CR,

(1) 53     tk,n-r(Kn)
K„Cl,n<k

< 2max{r(A:„): K„cl,n<k}.

In this way we get a triangular matrix [tk,n]ken,n<k ■ Next we proceed by

induction. Let t(Kx ) be a number which appears in the first column of this

matrix infinitely many times. If we have already defined t(Kn) for n < m,

then let t(Km) be a number which appears in the mth column of this matrix,

in rows number k for which r¿ „ = t(Kn) for n < m , infinitely many times.

Let / c R be an arbitrary interval. Let (ms)s be a strictly increasing se-

quence of those m £ N, for which Km C I. Take an e > 0 and find an

/ £ N such that £s>/ r(Km¡) < e . There is a k £ N such that tk¡n = t(Kn) for

n <m¡. So by (1),

J2t(Kmi)-r(Kms)
s=\

51     h,n'r(Kn)
K„CI ,n<m¡

< 2max{r(K„): Kn c /, n < m¡}

<2sup{r(K):KcI,K£JT}.
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Hence

53     t(K)-r(K)
Kci ,KeX

Y,t(Km¡)-r(Km¡)

< Y,t(Kms)-r(Kms)
5=1

+ YJ\t{Kms)-r(Kms)\

S>1

< 2suv{r(K): K c I, K £ Jf} + E.

Since e was an arbitrary positive number, the assertion of the lemma holds.   D

Proposition 10. Every compact interval belongs to f.

Proof. Since G^ - R, it is enough to prove by transfinite induction on a < Q

that every compact interval contained in Ga belongs to ^.

I. Let a - 0. Then Ga = 0 and there is nothing to prove.

II. (a) Assume that the assertion holds for each compact interval contained

in Ga and a is even. Let / be a compact interval contained in Ga+X and

e e (0, 1]. Let {/„: n} be a family (maybe empty) of all components of InGa

anda„ = inf/„ , b„ = sup/,, . For each n :

• if a„, b„ £ Ga , then I C Ga and so by assumption / £ f ;

• if an , b„ & Ga , then find a strictly increasing sequence (y„,z)zez with

limit points a„ and b„, and such that for each z e Z, |/„jZ| <

[q(I„,z, {an, bn})]2, where In¡z = [y„,z-X, yn,z] C Ga ; (Note that

unlike in the proof of Lemma 6, we do not require that yn,z £ T for

Z£l)

• if an £ Ga and bn £ Ga, then find a strictly increasing sequence

(yn,z)zeN with ynA = an and limz^ooy„;Z = bn, and such that for

each z e N\{1}, |/„,z| < [o(In,z, {K})]2, where 7„,z = [y„,z_i,

yn,z] c Ga;

• similarly if a„ £ Ga and b„ £ Ga, then find a strictly increasing

sequence (y„>z)z6Z\N with y„;0 = bn and limz__00y„,z = an, and

such that for each z € Z\N, |/„jZ| < [ß(/„,z, {a«})]2, where h,z =

[yn,z-\,yn,z]c Ga.

For each « and z.let (/„,z,,, /„,Z;2) £ &>(I„,Z, e/2"+lzl). For ;e {1,2},

define the function /)•:/-> R by the formula

/)(*) = {
fn,z,j(x)     ifx£l„tZ,

1 ifxe/\Ga.

The pair (/i, f2) obviously satisfies (a)-(e) and fx, f2 are derivatives at points

of Ga n /. If x G I\Ga , then x £ S. Let t > 0 be arbitrary and let k £ N be

suchthat r>e/2/c. Set ?/ = min{/?({x}, Un+M^*7«.*)» T/6} ■ Let ^€(0, i/).

We may assume that x + y G int/s>m for some 5 and m (otherwise we would

drop the last two terms in the first line of the estimation below).   Then for



2208 ALEKSANDER MALISZEWSKI

;"e{i,2},

|i
\y

rx+y

/ fj-
Jx

<

<i

£

Jn.zC{x,x+y]

f     fj-\I*,z\   +  /      Wl + |/,.m||
Jln.z Jls.m J

<

2»+l*l
l/.,»C(x,x+y]

+ 3y < t.

+ 3[g({x},Is,m)]2

2k+i

A similar argument holds for y G (-n, 0). So fx, f2£ 3(1). Finally observe

that

//-H-lççU./-«--1)íEE 2"+|z| <«•!/!

and

|{x G /: /i(x) = f2(x) = l}\ > \I\Ga\ + 5353 (l - 2^y • \Snl„,z\
n      z

>\I\Ga\ + (l-e)-\SnlnGa\

>(l-e).\SnI\,

i.e. (f) and (g) are also fulfilled, which proves that / G / in this case.
II. (b) Assume that the assertion holds for each compact interval contained

in Ga and a is odd. First we will prove the following statement:

if I is a bounded interval contained in Ga+X and a — inf /, b =

(*)       sup/ G T, then there exist derivatives fx, f2 defined on cl /

which satisfy (a)-(e) and such that fx = f2 = 0 on cl I\Ga .

Let {/„ : n} be a family (maybe empty) of all components of / n Ga , and

let a„ , b„ be endpoints of /„ . For each n, use Lemma 6 to find a strictly

increasing sequence (y„,z)zez of elements of TC\In with limit points a„ and

b„ , and such that for each z g Z, \In,z\ < <p(In,z)+[Q(In,z, {^n , bn})]2 , where

h,z = \yn,z-\,yn,z\ C Ga . For each n and each zGZ,let (f„,z,i, fn,z,2) e

¿?(In,z, 1) and define r(I„>z) - ¡¡ fn,z,\- Use Lemma 9 for the family

3? - {/„ z : n, z £ Z} and the function r, and find a function V.3t^{-1, 1}

such that for every interval J c R,

53 t(In,z).r(In,z)
h.zCJ

<2sup{r(/„,z):/„iZc/}.

For j £ {1, 2} , define the function f¡: cl/ —► R as follows

t(In,z)-fn,z,j(x)     ifxG/„,z,

if X G cl/\GQ.
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The pair (fx, f2) obviously satisfies (a)-(e) and fx, f¿ are derivatives at points

of Ga n I\{a, b}. If x G I\Ga or x G {a, b} , then x G T. Let y > 0. We
may assume that x + y £ intls,m for some s and some m £ Z (otherwise we
would drop the last term in the first line of the estimation below). Then for

/g{1,2},

y    x y   \In.zC(x,x+y]JI-' JI'-'"

53 t(In,z)>r(I„,z)
h,zC(x,x+y]

+ 2\IS

<
2sup{r(/w,z):/„,zc(x,x + y]} , 2• <p(Is,m)(l +y)

y + y2
+ 2y

4sup{|/„,z|:/w,zc (x,x + y]}

| 2- <p(x, x + y + \Is,m\) • (I +y) |

y + \Is,m\-<P(IS,m)

< 4-<p(x,x + y) | 2jç>(x,x + y + |/S)m|)

i+y

i _ p(jc,jc+j> + |/,,m|)

1 y+\i,,m\

y + \is

+ 6y^°0.

(We used the fact that T is nonporous at x.) Similar argument holds for y < 0,

so f\, f2 £ 3(ell), which completes the proof of (*).
Now let / be any compact interval contained in Ga+X and e G (0, 1].

• Use Lemma 3 to find nonoverlapping compact intervals Jx, ... , J„

contained in lnGa suchthat fr(/nGa\U?=i JÙ c r> \InGa\\J"=\ H <

5^1 and l^nAU^,/,!^51^1. For i £ {1,...,«}, let (giA,
giy2)£<?(Ji,e/2).

• Let Ix,..., Im be components of /\ U"=i J¡ ■ For k £ {1, ... , m} ,

use (*) with I = Ik and find derivatives hk,\, hk2 defined on cllk
which satisfy (a)-(e).

• Use Lemma 7 with D — I\Ga and ex - e2 - I - e, and find approxi-

mately continuous functions fo,\, fo,2 satisfying conditions (l)-(4) of

that lemma.
• For j £{1,2} , define the function f ■■: I —> R as follows:

f(r\-f   (Y\ + lgl>jW   ifxeJi, ie{l,...,n},
M,"/0'jl)    UuW   if*€/t, k£{l,...,m}.

Then obviously fx  and f2 are derivatives which satisfy (a)-(e).   (Note that
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hkj — 0 at the endpoints of Ik and on Ik\Ga , k £ {I, ... , m}.) Moreover,

|//i-|/||<   I       /i- (jJi   +   Í fx- lnGa\\JJi
1=1

<

<

+

e

2

e

/        /l - \I\Ga\
Jl\G„I\Ga

n

¡=1

+ 3 /nc7a\(J-//
;=i

+ e-\I\Ga\

+ --|/nC7a| + e.|/\C7a|<e.|/|,

and

!{x G /: /,(x) = f2(x) = l}\ > 53 |{x G /,: /,(*) - /2(x) = 1}|
/=i

>¿(i-f)-|5n^|
í=i

- (i-f)(i-f)-|5n/|>(l-e).|5n/|,

so (f) and (g) are also satisfied, which proves that / G ¿f in this case.

III. Assume that a is a limit ordinal and that every compact interval in

Gß with some ß < a belongs to ^. Let / be an arbitrary compact interval

contained in Ga . Then by the compactness of / we get / c Gß{ U- • -l)Gßn = Gy,

where y - max{/?,: i £ {I, ... , n}} < a. Hence by assumption I £ ,/ .
This completes the proof.    D

Theorem 11. Assume that ScR is ambiguous and T = R\S is nonporous.

Then there exist derivatives f, g £ 3 such that

(i)   f-g = 0 on T,
(ii)  f^g and |/| = 1 on S,

(iii)   \f\<2,\g\<2.

Proof. Let Iz = [z - 1, z] for z G Z. By Proposition 10, Iz £ f . Let, e.g.,
(fz,gz)e^>(Iz, 1)(zgZ). Define

f(x) = fz(x)     if X£lz,Z£l,

g(x) = gz(z)   if xg/z,zgZ.

It is easy to verify that / and g satisfy our requirements.   D

In 1990 J. Marik proved the following theorem.

Theorem 12. Let S c R,  T = R\S.   Then the following three conditions are
equivalent:

(1) There is a natural number m and derivatives fx, ... , fm such that

f\.fm — Xs-

(2) S is ambiguous and T is nonporous.
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(3) There are f, g £ 3 such that f = g = 1 on S and fg -0 on T [4,
Theorem 18].

Hence and by Theorem 11 we get the following corollary.

Corollary 13. Let S c R,  T = R\S.   Then the following four conditions are

equivalent:
(1) There is a natural number m and derivatives f\,..., fm such that

f\.fm — Xs-

(2) S is ambiguous and T is nonporous.

(3) There are f,g£3 such that f = g and \f\ = 1 on S, fg = 0 on T
and l/l <2, \g\ <2 on R.

(4) There is a natural number m and bounded derivatives f\, ... , fm such

that

fx.fm- Xs-
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