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NONCROSSED PRODUCT DIVISION ALGEBRAS

WITH A BAER ORDERING

PATRICK J. MORANDI AND B. A. SETHURAMAN

(Communicated by Ken Goodearl)

Abstract. Let n \ m be positive integers with the same prime factors, such

that pi | n for some prime p . We construct a noncrossed product division

algebra D with involution *, of index m and exponent n, such that D

possesses a Baer ordering relative to the involution * . Using similar techniques

we construct indecomposable division algebras with involution possessing a Baer

ordering.

1. Introduction

If D is either a field or a division ring equipped with an involution * (an

anti-automorphism of order 2), a Baer ordering on D is a subset P of the set of
symmetric elements of D under * such that ( 1 ) P + P ç P, (2) P contains 1

but not 0, (3) dPd* ç P for every d £ D - {0} , and (4) if d ¿ 0 is a symmetric
element of D, then either d £ P or -d e P. These orderings were first defined
by Baer [B], and later studied by Holland and others (cf. [H]], [H2], [H3], [C.],
[C2], [C3], [Lei], [Le2], [MW]). The following question arose during discussions

with Holland: do there exist noncrossed product division algebras which possess
Baer orderings? The purpose of this paper is to answer this question in the

affirmative. We show that for every pair of positive integers « | m having
the same prime factors, such that pi | « for some prime p, then there is a
noncrossed product division algebra of index m and exponent « possessing

a Baer ordering. Furthermore, for any prime p, if m > 3 and « satisfies
m > « > y + 1, we construct an indecomposable division algebra of index pm

and exponent p" possessing a Baer ordering. The method we use to produce
noncrossed products and indecomposable division algebras is that developed in

[JW]; that is, our examples will be the underlying division algebra of a tensor

product of suitably chosen symbol algebras over a field F = L\ n • • • n L,,
where the L, are strictly p-Henselian fields. The involutions on our examples
are necessarily of the second kind, since a division ring D has an involution
of the first kind iff the exponent of D is 2. As for division algebras with an

involution of the first kind, an indecomposable division algebra of exponent 2
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is constructed in [CW], and that example contains a Baer ordering, as pointed

out in the remark below after Proposition 11. It is unknown whether there exist

noncrossed products of exponent 2.

2.   eVALUATIONS AND BAER ORDERED DIVISION RINGS

We recall the "lifting criterion" from [H2], which we will use to construct Baer
orderings on our examples below. If D is a division ring with an involution

*, then a valuation v on D is said to be a * -valuation if v(d*) = v(d) for

all d £ Dx = D - {0} . That is, v is a evaluation if v o * = v . If D is the

residue division ring of D relative to a evaluation, then D has an involution

induced from * , which we will also denote by *, defined by w* = w*.

Let d be either a symmetric or a skew-symmetric element of Dx . Then

d*d~x £ Z(D), the center of D, and it is easy to check that the map x >-*

dx*d~x is also an involution of D, and induces an involution on D. Let c¿

be the automorphism on D induced by conjugation by d. The element d is
said to be smooth if the residue involution c¿ o * is equal to cp o *o cp~x for

some automorphism cp of D.

Now suppose that v isa evaluation on D with v(2) = 0, that is, char(D) ^

2. It can be seen that for every y £ Yp,, the value group of D, v~x(y) either

contains a symmetric or skew-symmetric element (see [H2, §3]). A evaluation

v on D is said to be smooth if (1) v(2) - 0, and (2) for every y £ YD,
if v~x(y) contains a symmetric element, then it contains a smooth symmetric

element, else v~x(y) contains a smooth skew-symmetric element.

The following was proved by Holland.

Theorem 1 [H2, Corollary 3.3]. If D is a division ring with involution *, and if

v is a smooth ^-valuation on D, then every Baer ordering on D defined with
respect to the residue involution * on D lifts to a Baer ordering on D with

respect to *.

We will apply the theorem above to obtain division algebras with a Baer

ordering. The following corollary summarizes our technique.

Corollary 2. Let F/K be a separable quadratic field extension and D an F-

central division algebra such that the corestriction CorF/K(D) = 0. Suppose D

has a valuation v such that D/F is totally ramified and F/K is inertial. Also

suppose that the residue field K has an ordering which does not extend to F.

Then there is an involution * on_D which is trivial on K such that v is a

^-valuation, and the ordering on K lifts to a Baer ordering on D with respect

to *.

Proof. By Scharlau's theorem [D, p. 118], D has an involution * which extends

the nonidentity automorphism o of Gal(F/K). The valuation v\k extends

uniquely to F by hypothesis, so v is a evaluation since v o *\K = v\¡c. Note

that v(2) = 0 since char AT = 0. Furthermore, v is smooth, because c¿ = id

for any d £ Dx as D — F. To apply Theorem 1, it suffices to show that the

ordering on K is a Baer ordering on D with respect to the residue involution

*. Since F/K is quadratic and inertial, F = K(y/â) for some a £ K. If

P is the ordering on K, then a & P since P does not extend to F. If
x = a + ßs/ä £ F, then xx* = a2 - ß2a > 0, hence property (3) of the
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definition of a Baer ordering is satisfied for P. The other properties of a Baer
ordering are trivial to check, so P is indeed a Baer ordering of D with respect
to *.   D

3. Intersections of strictly />-Henselian valued fields

Let p be a prime, and let F be a field containing a primitive pth root of
unity £. Let F(p) be the compositum inside an algebraic closure of F of all

Galois extensions K of F with [K : F] a power of p. (F(p) is called the
^-closure of F.) Let v be a valuation on F. Recall that F is said to be

p-Henselian if cha^T7) ^ p and v has a unique extension to F(p).

A valued field (F, v) with ¿; e 7" is said to be strictly p -Henselian if it is

p-Henselian and F — F(p). Note that if (F, v) is strictly p-Henselian, then
the valuation units of F are prth powers in F for any r, and Gal(F(p)/F) =

©■LiZp , where « = dimZ/pZ(rV/prV ), and Zp is the p-adic integers (see [JW,
Lemma 1.9]).

If (F, v) is a valued field with char(F) ^ />, fix an extension of u to T^/?),

and let L be the fixed field of the inertia group of F(p). Then (L, v\L) is
called the strict p -Henselization of (F ,v). The valued field L is strictly p-
Henselian, and is a maximal unramified extension of F in F(p). Moreover,

the strict p-Henselization of a field is unique up to isomorphism.
Recall that if F is any field with valuations V\, ... ,vk, then these valua-

tions are said to be pairwise independent if no proper subring of F contains
the valuation rings of any pair of valuations v¡, v¡ .If F is a field containing

a primitive pth root of unity and A is a central simple T'-algebra of exponent
a power of p, the p -index of A is defined to be

p-ind(A) = min{[L:F]\F CLC F(p), L splits A}.

Note that ind(^4) < p- ind(A), with equality whenever A has a maximal sub-

field contained in F(p). The following was proved by Jacob and Wadsworth

[JW, Theorem 4.11].

Theorem 3 (Jacob-Wadsworth). Let F0 be a field with pairwise independent val-

uations v\, ... , vk , containing a primitive pth root of unity. Let Lj be a strict

p-Henselization of (F0, Vj), and let F = L\ n • • • n L,.   With respect to Vj

we have F = Lj and Y? = Y^ , and for any central simple F-algebra A of

exponent a power of p, we have

( 1 )  ind(^) < p- ind(A) = max {p- ind(A ®F Lj) \ 1 < ;' < k} ;
(2) if ind(A ®F Lj)   = p-ind(A ®f Lj)   for each  j, then  ind(yi)   =

p-ind(A).

Proof. This is really just an amalgamation of Theorems 4.3, Remark 4.4(H) and

Theorem 4.11, as well as the remark at the end of §4 of [JW].   D

4. The examples

We start this section by constructing noncrossed products containing a Baer

ordering, of index pm and exponent p". Let p be a prime and m > « > 3

integers. Let F0 - C(x\, x2,y\, ... , y2m), where the xy and y¡ are inde-

terminates. Recall that if L is any field and z\, ... , zk are indeterminates,
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then ordering Y = ®k=xZ anti-lexicographically, there is a unique valuation

v : L(zx,... , zk)x -yY such that v(zj) = (0, ... ,0,1,0,... ,0) (the 1 is
in the jth place) and v(l) = 0 for all I £ Lx . We refer to this valuation as the

(z\, ... , z,)-adic valuation on L(z{, ... , zk). Let v\ be the (xi, X2)-adic

valuation on F0 (viewed as a rational function field over C(y\, ... , y2m)) and

v2 the (y\, ... , y2m)-adic valuation on Fo (viewed as a rational function field
over C(xi, X2)). Then the value group and residue field of 7b with respect to

v\ are Z©Z and <C(y\, ... ,y2m) respectively. Similarly, the value group and

residue field of 7b with respect to v2 are e2™,Z and C(xi, X2) respectively.

Let a be the automorphism of 7b extending complex conjugation on C de-

fined by ct(xi) = X2, <t(x2) = Xi and a(yj) = y¡ . Then a is an automorphism
of order 2, and the fixed field is easily seen to be

K0 := R(*i + x2, /'(xi -x2),yi,... , y2m).

Therefore 7b = K0(i). Note that with respect to the restriction of v2 to K0,

the residue field A"0 is R(xi + X2, i(x\ - x2)), a purely transcendental extension

of R. This implies that Ko is formally real, hence has an ordering £P . Then

by [L, Theorem 3.10], there is an ordering P on Ko which is compatible with
v2 in the sense of [L, §2]. Let C be a fixed algebraic closure of Fo, and extend

V\ and v2 to valuations on C, which we also denote by V\ and v2 . Let K' be
a Henselization of Ko inside C with respect to v2 . There is an ordering Q on

K' extending P which is compatible with v2 by [L, Theorem 3.16, Corollary

3.22]. Let R be a real closure of (K', Q) inside C. Since C = R(i) and
7b = K0(i), the automorphism of C that fixes R and sends i to —i is an

extension of o on 7b, and we will denote it also by o . With respect to v2\R,

the field R is Henselian, since R is an algebraic extension of the Henselian
field K'. Thus the ordering R2 of R is compatible with v2\r . Furthermore,

since (R,v2) is Henselian, the valuation v2 on R extends uniquely to C,

hence i>2 ° cr = v2 .

Let F(p) be the p-closure of 7b inside C, and let L\ and L2 be strict
p-Henselizations inside F(p) of (7b, Vi) and (Fo, v2) respectively. The field
o(Lj) (j — 1, 2) is then a strict p-Henselization of F) with respect to Vj o ¿r

by [E, 19.10]. But since V2 ° o = V2 on C, we see cr(L2) = ¿2- Let F =

L\ n a(L\) n L2. Then a restricts to an automorphism of order 2 on F ; and
if K = F" is the fixed field of o\f , then K = F n R, so K is an ordered
field with ordering R2 n K compatible with V2 . Furthermore, as 1 £ Fq , we

have i £ F, so F = K(i). Taking residues with respect to t>2, we find K

is an ordered subfield of F with F = K(i). Thus, the ordering on AT is a

Baer ordering on F with respect to the residue involution o (see the proof of
Corollary 2).

Our examples of noncrossed product algebras with Baer ordering will be con-

structed over the field F . The following lemma will allow us to use the local-

global principles of [JW] (Theorem 3 above) to analyze division algebras with

center F.

Lemma 4. The valuations V\, V\ o a and v2 are independent on F0, hence

on F.
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Proof Let Vj be the valuation ring of Vj on F0 (j = 1, 2). Then a(V\)
is the valuation ring of V\ o a. To say that two valuations are independent
is to say that the two corresponding valuation rings do not lie in any proper
common overling of F0 . Since v\ is the (xi, X2)-adic valuation ring of Fo,

the valuation v\ o o is easily seen to be the (x2, xi )-adic valuation of Fo . The

only proper overling of V\ in Fo is the X2-adic valuation ring of F0. Similarly,

the only proper overling of o(V\) in Fo is the Xi-adic valuation ring. Since
the Xj-adic and X2-adic valuation rings of Fo are distinct, V\ and V\ o o are
independent. Clearly v\ and V2 are independent, as are V\ o o and «2 • The

field F is an algebraic extension of Fo, so it follows that the valuations V\,

v\oo and v2 are pairwise independent on F.   d

If L is a field containing a primitive tth root of unity £ and a, b £ Lx ,

let Aç(a, b; L) be the (central simple) L-algebra of dimension t2 generated

by two elements r and s subject to the relations

r' — a,    s' = b,    sr — Çrs.

The algebra A((a, b; L) is called a symbol algebra. Our examples will be

constructed using symbol algebras. Let m > n > 3 be integers, let co be a

primitive p"th root of unity in F and p = of" , a primitive pth root of
unity. Define

m

Ai = Aw(xi + x2, X]X2 ; F),        A2 = (2)Ap(y2j-i, y2j ; F).

j=i

Finally, let D be the underlying division algebra of A\ ®f A2 . The following
lemma is the analogue of [JW, Lemma 5.3] for our situation.

Lemma 5. With notation above, A\ ®f L\ and A\ ®F o(L\) are division alge-

bras of index, p-index and exponent p", while L{ and o(L\) split A2. Also,

A2 ®f L2 is a division algebra of index and p-index pm and exponent p, while
7.2 splits A\. Moreover, if M is a splitting field of A2 containing L2, then
Gal(M/L2) has (Z/pZ)m as a homomorphic image.

Proof. Since the y¡ are units with respect to V\, they become p"th powers in
Li ([JW, Lemma 1.9]), so Li splits A2. We have

Ax ®F Lx = Aw(x\(l +xf1x2), X]X2; 7.,) = ^„(xi, x2),

since 1 + xf1X2 is a unit and .4a,(xi, Xi) = Aw(x\, -X\) is split. Thus, by
[JW, Corollary 2.6], A\®f L\ is a totally ramified division algebra with respect

to V\ of index, p-index, and exponent p" . Similar arguments apply over the

field c(T.i) and L2. The proof of the last statement of the lemma is identical

to that of the corresponding statement of [JW, Lemma 5.3].   D

Theorem 6. The division algebra D is a noncrossed product division algebra of
index p" and exponent pm .

Proof. The index of D follows from Theorem 3 and Lemma 5. As for the
exponent, we have pm = exp(^i ®f L\) = exp(7) ®f Li) < exp(7>) = pm . The

proof that D is a noncrossed product is identical to that of [JW, Theorem

5.4(a)].   D
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We next show that D has an involution * , and that the valuation v2 extends
to a evaluation on D. We do this in the next two lemmas.

Lemma 7. Let a, b £ Kx , and let £ be a primitive tth root of unity in F. Then

the symbol algebra A^(a,b; F) has an involution extending a. Therefore there
is an involution * on D extending a.

Proof. Let r and s be the generators of A = A^(a, b; F) satisfying r' — a,

s* = b, and sr = Çrs. We define * on A by (£caßrasß)* = £ o(caß)l;aßrasß ,

where caß £ F. Clearly * is additive and extends o. Moreover, if c £ F,

since o(¿.) - ¿|_1, we see that

(crasßY* = (a(c)£,aßrasß)* = c£,~aß £,aß ra sß = crasß.

Therefore * has order 2. To see that * is an anti-automorphism, it suffices to
show that (rasß • rV)* = (r?ss)*(rasß)*. Now rasß • ryss = (Cßy ra+y sß+s)*, so

(rasß , r?sA* - £-ßy+(a+y)(ß+8)ra+ysß+6

whereas
(ryss)*(rasß)* = lyS ry ss iaß ra sß = ps+aß+Sary+ass+ß %

Thus these two elements are equal, so * is in fact an involution of A extending

a.

To see that D has an involution * extending o on F, by the argument

above, each of Am(x\ + x2, x\x2 ; F), Ap(y2j-x, y2j ; F) ( 1 < j < m) has an
involution extending a . Therefore by Scharlau's theorem [D, p. 118], if cor

is the corestriction map from F to K, we see each of these algebras has core-
striction zero in Br(AT), hence cor(TJ)) = 0. Thus applying Scharlau's theorem

again, D has an involution * extending rr.   D

Lemma 8. There is a valuation on D extending v2 which is a ^-valuation.

Furthermore, with respect to this valuation, D/F is totally ramified.

Proof. Since D and A2 ®f L2 both have index pm , the similarity D ®p L2 ~
A2 ®p L2 shows that D ®p L2 = A2 ®f L2. The valuation v2 extends to

a totally ramified valuation on A2 ®f L2 by [JW, Corollary 2.6], which then
restricts to a valuation on D, which we will also call v2. Since 7^_ç D ç
A2 ®f_L2 = L2 = F, the last equality by Theorem 3, we see that D — F . Since

char(F) = 0, D/F is defectless with respect to i>2 , so it follows that D/F is
totally ramified with respect to V2 . Finally, v2 and v2 o * are both valuations

on D that extend v2\f — v2\f ° o , hence v2 = v2 o * by [W, Theorem]. Thus

v2 is a evaluation on D.   n

We are now able to show that the noncrossed product division ring D pos-
sesses a Baer ordering relative to the involution * .

Corollary 9. If D is the noncrossed product of index pm and exponent p" de-
fined above, then D has a Baer ordering relative to the involution * on D defined

in Lemma 1.

Proof. This follows from Corollary 2, since D/F is totally ramified with re-

spect to the evaluation v2 , by Lemma 8, and F/K is separable quadratic by

construction.   G
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We now construct examples of Baer ordered noncrossed products of arbitrary
index m and exponent «, provided p3 | « for some prime p. Let « | m be

positive integers with the same prime factors, say m = pß' • • • pf '  and n =

p"1 ■ • -p"', and suppose a\ > 3 . Let 7 be the noncrossed product of index pf'
and exponent p"' with involution */ containing a Baer ordering as constructed

in Corollary 9.  Let F = Z(I), and let K be the symmetric subfield of F.

Let | zj ' | 2 < k < t, 1 < j < 2sk \ be a set of indeterminates over F, where

sk - ßk - otk + 1, and let F' and K' be the iterated Laurent series fields

F' = F((z\l))) ■ ■ • ((zg)) and K' = K((z[l))) ■ ■ ■ ((zg)) respectively. Note that

[F' : K'] = 2, and the nonidentity automorphism a of F' which fixes K'

extends *\p . Let cok be a primitive p^-root of unity in F and pk a primitive

p,th root of unity in F . Set

Tk = 4t(zf», zf ; F') ®F, APk(zf , zf ; F') ®F,- *F. A^z^ , z%F>),

and let T — T2 ®f ■ ■ ■ ®f' Tt. Then with respect to the (z¡ , ... , z2^)-adic

valuation on F', we see that T is a totally ramified division algebra over F'

of index m/pßl by [JW, Corollary 2.6], and T has exponent n/p"] by [TW,

Theorem 4.7(i)]. Therefore T = F' = F. Let D — I ®p T. By Lemma 7,
there is an involution *p on T which extends a on F'. Let * = */ ® *t , an

involution on D extending o on F'.

Theorem 10. The algebra D defined above is a noncrossed product division alge-
bra of index m and exponent «, and D contains a Baer ordering with respect

to the involution *.

Proof. Since 7 and T have relatively prime indices, D is a division algebra,
and so ind(D) = m . Also, exp(7J>) = exp(7) exp(F) = « . Let 7' = I ®p F'.
Then 7' is inertial over F' and D = V ®f> T. The Henselian valuation on

F' extends to 7), and from the fundamental inequality we see that D - I' - I

and Yd = Yp ■ Also, the involution on D induced by * is */. If v is the
valuation on F', then v o a = v , since v\k> extends uniquely to F' (as K'

is Henselian). Thus by [W, Theorem], v o * = v on D. Therefore v is

a evaluation on D. We claim that v is a smooth valuation. To see this,

if y £ Yd = Yt , then y = v(d) for some d £ T with d* = ±d (see §2).
Moreover we may assume d is symmetric by replacing d by id if necessary.

Since the residue automorphism c¿ is the identity for d £ T, we see that d js

a smooth element, hence v is smooth. Therefore the Baer ordering on 7 = D
can be lifted to D by Theorem 1. (Alternatively, one could consider the (totally

ramified) valuation on D which is the composite of v with the valuation on 7

for which 7 is totally ramified, and apply Corollary 2 to show that D is Baer

ordered.)
To finish the proof we need to show that D is a noncrossed product. If

not, then there is a maximal subfield M of D which is Galois over F'. Let

G = Gal(M/F'). Let JV be a pi-Sylow subgroup of G, and let L be the fixed

field of N. Then [L : F'] = m/pß> and [M : L] = pß] . If I'L (resp. FL) is
the underlying division algebra of I' ®f> L (resp. T ®F' L), then I'L and TL
have relatively prime indices, ind(7¿) and [M : L] are relatively prime, and

M splits I'L ®L TL ■ Therefore TL is split. Since [L: F'] = ind(F), it follows
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that L is a maximal subfield of T. Since T is totally ramified over F', so is

L; hence L/F' is Galois [TW, Proposition 1.4(iii)]. Thus N is normal in G.

Since gcd(|7V| , \G/N\) = 1, the group G is a semidirect product N » 77 by the
Schur-Zassenhaus theorem [R, p. 149]; in particular, G contains a subgroup

77 with \G:H\= pß'. If F is the fixed field of 77, then [E : F'] = pßl ; and
so by a similar argument to that for L, we see that F is a maximal subfield of

7'. Thus E/F' is unramified, so [E : F] = pß[ . Therefore F is a maximal

subfield of 7 = 7'. However, E ç M ç D = I, so M is a maximal subfield of
7. But M/F is Galois since M/F' is Galois and char(F) = 0, by [E, 14.5].
This means 7 is a crossed product, which is false. Therefore D is a noncrossed

product,   d

We finish this paper with examples of indecomposable division algebras pos-

sessing a Baer ordering. We follow the method described in [JW, Remark 5.6].

Let p be a prime, m > 3, and let « be an integer with m > « > y + 1.
Construct the field F exactly as in the beginning of this section, except with

four Xj and four y7, and such that o(Xj) = xy for ; = 3, 4. Let coj be a

primitive p;th root of unity in F . Let t be the smallest integer greater than

or equal to m/2, and set

A\ = Aw„ (x\ + x2, X[X2 ; F) ®F AWm_n (x3, x4 ; F),

M = Amt(y\ ,y2;F) ®F A^^yj, y*; F).

Let D be the underlying division algebra of A\ ®p A2. We equip D with an

involution * extending a by Lemma 7.

Proposition 11. The algebra D above is an indecomposable division algebra of

index pm and exponent p" which possesses a Baer ordering with respect to *.

Proof. That D has index pm and exponent p" , and is indecomposable, follows

essentially from the argument in [JW, Remark 5.6]. (The argument given there

for m = 4, « = 3 carries over here as the integers «, m - «, t, m - t

are all distinct and D ®F L\ = AWri(x\, x2\ L\) ®Lt AWm_n(x?,, X4 ; L\), and

D®f L2 = Aœi(y\, y2 ; L2) ®l2 AWm_t(y^, v4 ; L2).) As in the case in Lemma 8,

we see that D has a evaluation extending v2 on F, such that D/F is totally

ramified. Therefore the Baer ordering on D = F relative to 0 lifts to a Baer

ordering on D relative to * .   D

Remark 1. The division algebra of Proposition 11 can be shown to be a crossed

product. As noted in [JW, Remark 5.6], their construction of indecomposable

division algebras can be modified to produce noncrossed products which are in-

decomposable, and similarly the construction above can be modified to produce

indecomposable noncrossed products with a Baer ordering.

In all of the examples above, the involution involved is of the second kind.

If D has an involution of the first kind, then exp(D) = 2, and it is unknown

whether there exist noncrossed products of exponent 2. However, in terms of

indecomposability, Chacron and Wadsworth constructed in [CW] an indecom-

posable division algebra D of index 8 and exponent 2 which has a c-valuation

with respect to an involution * of the first kind on D. They used the method

of [JW] to construct D, and as in the examples of [JW] and ours, D has a

totally ramified valuation over F = Z(D), and F is a formally real field. Thus
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any ordering on F = D can be lifted to a Baer ordering of D with respect to

* by Theorem 1. Therefore there exist indecomposable Baer-ordered division

algebras with involution of the first kind.

Remark 2. Since this paper was submitted, the authors ([MS]) have constructed

indecomposable Baer ordered division algebras of index p" and exponent pm

for all primes p and integers « > m > 1 (except for p = « = 2 and m = 1,

for which there are no indecomposable division algebras). The method used

in [MS] is similar to that used in this paper, except that an indecomposable

division algebra of the right index and exponent is combined with a totally
ramified division algebra to obtain the desired examples.
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